IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v567y2021ics0378437120309274.html
   My bibliography  Save this article

The numerical simulation of Quanto option prices using Bayesian statistical methods

Author

Listed:
  • Lin, Lisha
  • Li, Yaqiong
  • Gao, Rui
  • Wu, Jianhong

Abstract

In the paper, the pricing of Quanto options is studied, where the underlying foreign asset and the exchange rate are correlated with each other. We first adopt Bayesian methods to estimate unknown parameters entering the pricing formula of Quanto options, including the volatility of underlying foreign asset, the volatility of exchange rate and the correlation between them. Then we compute and predict prices of different four types of Quanto options by using Bayesian posterior prediction techniques and Monte Carlo methods in combination. Finally, we provide numerical simulations implemented by Markov Chain Monte Carlo methods to demonstrate the advantage of Bayesian method used in this paper comparing with some other existing methods. This paper is a new application of Bayesian methods in the pricing of multi-asset options.

Suggested Citation

  • Lin, Lisha & Li, Yaqiong & Gao, Rui & Wu, Jianhong, 2021. "The numerical simulation of Quanto option prices using Bayesian statistical methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  • Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309274
    DOI: 10.1016/j.physa.2020.125629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309274
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacquier, Eric & Jarrow, Robert, 2000. "Bayesian analysis of contingent claim model error," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 145-180.
    2. Karolyi, G. Andrew, 1993. "A Bayesian Approach to Modeling Stock Return Volatility for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 579-594, December.
    3. Manaster, Steven & Rendleman, Richard J, Jr, 1982. "Option Prices as Predictors of Equilibrium Stock Prices," Journal of Finance, American Finance Association, vol. 37(4), pages 1043-1057, September.
    4. Bauwens, Luc & Lubrano, Michel, 2002. "Bayesian option pricing using asymmetric GARCH models," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 321-342, August.
    5. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    6. Satchell, Stephen & Knight, John, 2007. "Forecasting Volatility in the Financial Markets," Elsevier Monographs, Elsevier, edition 3, number 9780750669429.
    7. Wei Xie & Barry L. Nelson & Russell R. Barton, 2014. "A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation," Operations Research, INFORMS, vol. 62(6), pages 1439-1452, December.
    8. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    9. Knight, John L & Satchell, Stephen E., 1997. "Existence of Unbiased Estimators of the Black/Scholes Option Price, Other Derivatives, and Hedge Ratios," Econometric Theory, Cambridge University Press, vol. 13(6), pages 791-807, December.
    10. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    11. Gao, Rui & Li, Yaqiong & Lin, Lisha, 2019. "Bayesian statistical inference for European options with stock liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 312-322.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Vasiliki D. Skintzi & Apostolos‐Paul N. Refenes, 2005. "Implied correlation index: A new measure of diversification," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(2), pages 171-197, February.
    14. Satchell, Stephen, 2007. "Forecasting Expected Returns in the Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780750683210.
    15. Chen, Son-Nan & Chiang, Mi-Hsiu & Hsu, Pao-Peng & Li, Chang-Yi, 2014. "Valuation of quanto options in a Markovian regime-switching market: A Markov-modulated Gaussian HJM model," Finance Research Letters, Elsevier, vol. 11(2), pages 161-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisha Lin & Yaqiong Li & Rui Gao & Jianhong Wu, 2019. "The Numerical Simulation of Quanto Option Prices Using Bayesian Statistical Methods," Papers 1910.04075, arXiv.org.
    2. Shu Wing Ho & Alan Lee & Alastair Marsden, 2011. "Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models," JRFM, MDPI, vol. 4(1), pages 1-23, December.
    3. Gao, Rui & Li, Yaqiong & Lin, Lisha, 2019. "Bayesian statistical inference for European options with stock liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 312-322.
    4. Moritz Duembgen & L. C. G. Rogers, 2014. "Estimate nothing," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2065-2072, December.
    5. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    8. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    9. Gael M. Martin & Catherine S. Forbes & Vance L. Martin, 2005. "Implicit Bayesian Inference Using Option Prices," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 437-462, May.
    10. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    11. Hanno Gottschalk & Elpida Nizami & Marius Schubert, 2016. "Option Pricing in Markets with Unknown Stochastic Dynamics," Papers 1602.04848, arXiv.org, revised Jan 2017.
    12. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    13. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    14. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    15. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    16. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    17. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    18. Avinash & T. Mallikarjunappa, 2020. "Informational Role of Open Interest and Transaction Volume of Options: A Meta-Analytic Review," FIIB Business Review, , vol. 9(4), pages 275-285, December.
    19. Linda S. Klein & David R. Peterson, 1988. "Investor Expectations Of Volatility Increases Around Large Stock Splits As Implied In Call Option Premia," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 11(1), pages 71-80, March.
    20. Wei-han Liu, 2019. "National culture effects on stock market volatility level," Empirical Economics, Springer, vol. 57(4), pages 1229-1253, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.