A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.2014.1316
Download full text from publisher
References listed on IDEAS
- Barry L. Nelson, 2013. "Foundations and Methods of Stochastic Simulation," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-6160-9, April.
- Stephen E. Chick, 2001. "Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty," Operations Research, INFORMS, vol. 49(5), pages 744-758, October.
- Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
- Russell R. Barton & Barry L. Nelson & Wei Xie, 2014. "Quantifying Input Uncertainty via Simulation Confidence Intervals," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 74-87, February.
- Jeremy Oakley, 2002. "Bayesian inference for the uncertainty distribution of computer model outputs," Biometrika, Biometrika Trust, vol. 89(4), pages 769-784, December.
- Bahar Biller & Canan G. Corlu, 2011. "Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations with Correlated Inputs," Operations Research, INFORMS, vol. 59(3), pages 661-673, June.
- Jeremy Oakley, 2004. "Estimating percentiles of uncertain computer code outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 83-93, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Corlu, Canan G. & Akcay, Alp & Xie, Wei, 2020. "Stochastic simulation under input uncertainty: A Review," Operations Research Perspectives, Elsevier, vol. 7(C).
- Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
- Lin, Lisha & Li, Yaqiong & Gao, Rui & Wu, Jianhong, 2021. "The numerical simulation of Quanto option prices using Bayesian statistical methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
- Tianyi Liu & Enlu Zhou, 2019. "Online Quantification of Input Model Uncertainty by Two-Layer Importance Sampling," Papers 1912.11172, arXiv.org, revised Feb 2020.
- Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
- Barry L. Nelson & Alan T. K. Wan & Guohua Zou & Xinyu Zhang & Xi Jiang, 2021. "Reducing Simulation Input-Model Risk via Input Model Averaging," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 672-684, May.
- Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
- Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
- Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
- Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
- Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
- Bing Wang & Jiaqiao Hu, 2018. "Some Monotonicity Results for Stochastic Kriging Metamodels in Sequential Settings," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 278-294, May.
- Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.
- Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
- Kleijnen, Jack P.C., 2017.
"Regression and Kriging metamodels with their experimental designs in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Discussion Paper 2015-035, Tilburg University, Center for Economic Research.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Other publications TiSEM c592e895-1656-43c3-8c7e-f, Tilburg University, School of Economics and Management.
- Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
- L. Jeff Hong & Guangxin Jiang, 2019. "Offline Simulation Online Application: A New Framework of Simulation-Based Decision Making," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
- Russell R. Barton & Barry L. Nelson & Wei Xie, 2014. "Quantifying Input Uncertainty via Simulation Confidence Intervals," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 74-87, February.
- Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
- Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.
- Xie, Wei & Barton, Russell R. & Nelson, Barry L. & Wang, Keqi, 2023. "Stochastic simulation uncertainty analysis to accelerate flexible biomanufacturing process development," European Journal of Operational Research, Elsevier, vol. 310(1), pages 238-248.
- Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
- Corlu, Canan G. & Akcay, Alp & Xie, Wei, 2020. "Stochastic simulation under input uncertainty: A Review," Operations Research Perspectives, Elsevier, vol. 7(C).
- Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Discussion Paper 2015-041, Tilburg University, Center for Economic Research.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Other publications TiSEM dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
- Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
- O’Hagan, A., 2006. "Bayesian analysis of computer code outputs: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1290-1300.
- Ehsan Mehdad & Jack P. C. Kleijnen, 2018.
"Efficient global optimisation for black-box simulation via sequential intrinsic Kriging,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2015-042, Tilburg University, Center for Economic Research.
- Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
- Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
- Ehsan Mehdad & Jack P.C. Kleijnen, 2018.
"Stochastic intrinsic Kriging for simulation metamodeling,"
Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(3), pages 322-337, May.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Stochastic Intrinsic Kriging for Simulation Metamodelling," Discussion Paper 2014-054, Tilburg University, Center for Economic Research.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Stochastic Intrinsic Kriging for Simulation Metamodelling," Discussion Paper 2015-038, Tilburg University, Center for Economic Research.
- Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
- Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
- Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
- Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
More about this item
Keywords
input uncertainty; Bayesian inference; credible interval; simulation output analysis; metamodel; Gaussian process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:6:p:1439-1452. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.