IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.07134.html
   My bibliography  Save this paper

No-arbitrage implies power-law market impact and rough volatility

Author

Listed:
  • Paul Jusselin
  • Mathieu Rosenbaum

Abstract

Market impact is the link between the volume of a (large) order and the price move during and after the execution of this order. We show that under no-arbitrage assumption, the market impact function can only be of power-law type. Furthermore, we prove that this implies that the macroscopic price is diffusive with rough volatility, with a one-to-one correspondence between the exponent of the impact function and the Hurst parameter of the volatility. Hence we simply explain the universal rough behavior of the volatility as a consequence of the no-arbitrage property. From a mathematical viewpoint, our study relies in particular on new results about hyper-rough stochastic Volterra equations.

Suggested Citation

  • Paul Jusselin & Mathieu Rosenbaum, 2018. "No-arbitrage implies power-law market impact and rough volatility," Papers 1805.07134, arXiv.org.
  • Handle: RePEc:arx:papers:1805.07134
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.07134
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    2. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    3. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    4. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    5. Mathias Pohl & Alexander Ristig & Walter Schachermayer & Ludovic Tangpi, 2017. "The amazing power of dimensional analysis: Quantifying market impact," Papers 1702.05434, arXiv.org, revised Sep 2017.
    6. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    7. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    8. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    9. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    10. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    11. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    12. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    13. Omar El Euch & Mathieu Rosenbaum, 2017. "Perfect hedging in rough Heston models," Papers 1703.05049, arXiv.org.
    14. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    15. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
    16. C. Gomes & H. Waelbroeck, 2015. "Is market impact a measure of the information value of trades? Market response to liquidity vs. informed metaorders," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 773-793, May.
    17. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    18. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    19. Rama Cont & Adrien de Larrard, 2013. "Price Dynamics in a Markovian Limit Order Market," Post-Print hal-00552252, HAL.
    20. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    21. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinwen Zhu & Gr'egoire Loeper & Wen Chen & Nicolas Langren'e, 2020. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Papers 2007.02113, arXiv.org.
    2. Fr'ed'eric Bucci & Michael Benzaquen & Fabrizio Lillo & Jean-Philippe Bouchaud, 2019. "Slow decay of impact in equity markets: insights from the ANcerno database," Papers 1901.05332, arXiv.org, revised Jan 2019.
    3. Mehdi Tomas & Mathieu Rosenbaum, 2019. "From microscopic price dynamics to multidimensional rough volatility models," Papers 1910.13338, arXiv.org, revised Oct 2019.
    4. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    5. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Working Papers hal-02910724, HAL.
    6. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    7. Eduardo Abi Jaber, 2020. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Working Papers hal-02412741, HAL.
    8. Frédéric Bucci & Michael Benzaquen & Fabrizio Lillo & Jean-Philippe Bouchaud, 2019. "Slow Decay of Impact in Equity Markets: Insights from the ANcerno Database," Post-Print hal-02323357, HAL.
    9. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Post-Print hal-02412741, HAL.
    10. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.
    11. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    12. Eduardo Abi Jaber, 2019. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Papers 1912.07445, arXiv.org, revised Jun 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    2. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    3. Youssef Ouazzani Chahdi & Mathieu Rosenbaum & Gr'egoire Szymanski, 2024. "A theory of passive market impact," Papers 2412.07461, arXiv.org.
    4. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    5. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    6. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    7. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    8. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    9. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
    10. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    11. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    12. Frédéric Abergel & Aymen Jedidi, 2015. "Long-Time Behavior of a Hawkes Process--Based Limit Order Book," Post-Print hal-01121711, HAL.
    13. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    14. Emilio Said, 2022. "Market Impact: Empirical Evidence, Theory and Practice," Working Papers hal-03668669, HAL.
    15. Julius Bonart & Martin Gould, 2015. "Latency and liquidity provision in a limit order book," Papers 1511.04116, arXiv.org, revised Jun 2016.
    16. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    17. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    18. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    19. repec:hal:wpaper:hal-01121711 is not listed on IDEAS
    20. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.07134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.