IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v561y2021ics0378437120306610.html
   My bibliography  Save this article

Traffic flow on star graph: Nonlinear diffusion

Author

Listed:
  • Nagatani, Takashi

Abstract

We study the urban-scale macroscopic traffic flow in city networks. Star graph is considered as traffic network. Star graphs with controlled traffic flow are transformed to various cell-transmission graphs by using the cell transmission method. The dynamic equations of vehicular densities on all nodes (roads) are presented on cell-transmission graphs by using the speed-matching model. The density equations are given by nonlinear-diffusion equations. The traffic flow on star graph is mapped to the nonlinear diffusion process on the cell-transmission graphs. At low mean density, the dynamic equations of densities can be approximated by the conventional diffusion equations. At low and high mean densities, the analytical solutions of densities on all nodes (roads) are obtained on cell-transmission complete, cycle and star graphs. By solving the dynamic equations numerically, the densities on all roads are derived at a steady state. The urban-scale macroscopic fundamental diagrams are obtained numerically on the cell-transmission graphs. The analytical solutions agree with the numerical solutions.

Suggested Citation

  • Nagatani, Takashi, 2021. "Traffic flow on star graph: Nonlinear diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
  • Handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306610
    DOI: 10.1016/j.physa.2020.125251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306610
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagatani, Takashi, 2006. "Control of vehicular traffic through a sequence of traffic lights positioned with disordered interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 560-566.
    2. Nagatani, Takashi, 2020. "Traffic flow stabilized by matching speed on network with a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Nagatani, Takashi & Naito, Yuichi, 2011. "Tour time in a two-route traffic system controlled by signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4522-4527.
    4. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    5. Gupta, Arvind Kumar & Redhu, Poonam, 2013. "Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5622-5632.
    6. Gupta, A.K. & Katiyar, V.K., 2006. "Phase transition of traffic states with on-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 674-682.
    7. Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
    8. Kerner, Boris S., 2017. "Breakdown minimization principle versus Wardrop’s equilibria for dynamic traffic assignment and control in traffic and transportation networks: A critical mini-review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 626-662.
    9. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    10. Wahle, Joachim & Bazzan, Ana Lúcia C & Klügl, Franziska & Schreckenberg, Michael, 2000. "Decision dynamics in a traffic scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 669-681.
    11. Arvind Kumar Gupta, 2013. "A Section Approach To A Traffic Flow Model On Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(05), pages 1-23.
    12. Zhu, Wen-Xing & Yu, Rui-Ling, 2014. "A new car-following model considering the related factors of a gyroidal road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 101-111.
    13. Nagatani, Takashi & Ichinose, Genki & Katsumata, Yuki, 2019. "Allee effect with time-varying migration on heterogeneous graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    14. Guanghan Peng & Xinhua Cai & Changqing Liu & Binfang Cao, 2011. "A New Lattice Model Of Traffic Flow With The Consideration Of The Honk Effect," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(09), pages 967-976.
    15. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verma, Muskan & Singla, Tanvi & Gupta, Arvind Kumar & Sharma, Sapna, 2024. "The role of occupancy on traffic flow in a multiple-loop network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Verma, Muskan & Sharma, Sapna, 2023. "The role of occupancy and transition rate on traffic flow in a percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    4. Verma, Muskan & Sharma, Sapna, 2023. "Modeling heterogeneity in an open percolation backbone fractal traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagatani, Takashi, 2020. "Traffic flow on percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Verma, Muskan & Sharma, Sapna, 2023. "The role of occupancy and transition rate on traffic flow in a percolation-backbone fractal," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Verma, Muskan & Singla, Tanvi & Gupta, Arvind Kumar & Sharma, Sapna, 2024. "The role of occupancy on traffic flow in a multiple-loop network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Zhang, Zhao-Ze & Huang, Hai-Jun & Tang, Tie-Qiao, 2018. "Impacts of preceding information on travelers’ departure time behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 523-529.
    5. Verma, Muskan & Sharma, Sapna, 2023. "Modeling heterogeneity in an open percolation backbone fractal traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    6. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 8-18.
    7. Leng, Jun-Qiang & Zhao, Lin, 2017. "Analysis of electric vehicle’s trip cost without late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 761-766.
    8. Leng, Jun-Qiang & Liu, Wei-Yi & Zhao, Lin, 2017. "Analysis of electric vehicle’s trip cost allowing late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 293-300.
    9. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of social optimum for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 275-283.
    10. Wang, Jing-Peng & Huang, Hai-Jun & (Jeff) Ban, Xuegang, 2019. "Optimal capacity allocation for high occupancy vehicle (HOV) lane in morning commute," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 354-361.
    11. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    12. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    13. Li, Wei-Hong & Huang, Hai-Jun & Shang, Hua-Yan, 2020. "Dynamic equilibrium commuting in a multilane system with ridesharing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    14. Zeng, Jiao-Yan & Ou, Hui & Tang, Tie-Qiao, 2019. "Feedback strategy with delay in a two-route traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    16. Ou, Hui & Tang, Tie-Qiao & Zhang, Jian & Zhou, Jie-Ming, 2018. "A car-following model accounting for probability distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 105-113.
    17. Chen, Dong & Sun, Dihua & Zhao, Min & Zhou, Tong & Cheng, Senlin, 2018. "Modeling and analyses for an extended car-following model accounting for drivers’ situation awareness from cyber physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 52-68.
    18. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    19. Zhao, Jing & Li, Peng, 2017. "An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 178-187.
    20. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.