IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007604.html
   My bibliography  Save this article

Dynamics of a stochastic HBV infection model with general incidence rate, cell-to-cell transmission, immune response and Ornstein–Uhlenbeck process

Author

Listed:
  • Su, Xinxin
  • Zhang, Xinhong
  • Jiang, Daqing

Abstract

In this paper, a stochastic HBV infection model with virus-to-cell infection, cell-to-cell transmission and CTL immune response is proposed. The model has a general form of infection rate, in which the contact rate is governed by the log-normal Ornstein–Uhlenbeck process. First, it is proved that the stochastic model has a unique positive global solution. The dynamic properties of the solutions around the equilibrium points are also analysed. It further follows that the disease-free equilibrium is globally asymptotically stable if R0<1, while the endemic equilibrium is globally asymptotically stable if R0>1. Then, we establish sufficient conditions for the stationary distribution and extinction of the model by constructing suitable Lyapunov functions, respectively. After that, we calculate the exact analytical expression for the probability density function of stationary distribution near the quasi-endemic equilibrium. Finally, the effect of the Ornstein–Uhlenbeck process on the dynamical behaviour of the model is verified by numerical simulations. One of the most interesting findings is that larger regression speeds and smaller volatility intensities can significantly reduce major outbreaks of HBV infection within the host, which may have important implications for future HBV therapeutic regimens.

Suggested Citation

  • Su, Xinxin & Zhang, Xinhong & Jiang, Daqing, 2024. "Dynamics of a stochastic HBV infection model with general incidence rate, cell-to-cell transmission, immune response and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007604
    DOI: 10.1016/j.chaos.2024.115208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xue & Su, Yongmei & Yang, Liangli & Zhuo, Xinjian, 2022. "Global analysis and simulation of a fractional order HBV immune model," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
    3. Peijiang Liu & Abdullahi Yusuf & Ting Cui & Anwarud Din, 2022. "Stochastic Optimal Control Analysis For The Covid-19 Epidemic Model Under Real Statistics," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(08), pages 1-24, December.
    4. Yongbao Wu & Wenxue Li & Jiqiang Feng, 2017. "Stabilisation of stochastic coupled systems via feedback control based on discrete-time state observations," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2850-2859, October.
    5. Cerón Gómez, Miller & Mondragon, Eduardo Ibarguen, 2021. "Global stability analysis for a SEI model with nonlinear incidence rate and asymptomatic infectious state," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatun, Mst Sebi & Mahato, Kiriti Bhusan & Das, Pritha, 2024. "Dynamics of an SuSaV IR epidemic model with stochastic optimal control and awareness programs," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. de la Cruz, H. & Jimenez, J. C, 2020. "Exact pathwise simulation of multi-dimensional Ornstein–Uhlenbeck processes," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    4. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    5. Liu, Qun & Jiang, Daqing, 2020. "Stationary distribution of a stochastic cholera model with imperfect vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Huo, Hai-Feng & Jing, Shuang-Lin & Wang, Xun-Yang & Xiang, Hong, 2020. "Modeling and analysis of a H1N1 model with relapse and effect of Twitter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    9. Tian, Baodan & Zhang, Yong & Li, Jiamei, 2020. "Stochastic perturbations for a duopoly Stackelberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Yang, Qian & Huo, Hai-Feng & Xiang, Hong, 2023. "Analysis of an edge-based SEIR epidemic model with sexual and non-sexual transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    12. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Han, Bingtao & Jiang, Daqing, 2023. "Coexistence and extinction for a stochastic vegetation-water model motivated by Black–Karasinski process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    14. Lu, Jingjing & Teng, Zhidong & Li, Yingke, 2020. "An age-structured model for coupling within-host and between-host dynamics in environmentally-driven infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Lu, Chun & Xu, Chuanlong, 2024. "Dynamic properties for a stochastic SEIR model with Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 288-300.
    16. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    17. Yang, Xiaochen & Yang, Zhanwen & Zhang, Chiping, 2023. "Numerical analysis of the Linearly implicit Euler method with truncated Wiener process for the stochastic SIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 1-14.
    18. Li, Qiang & Kang, Ting & Zhang, Qimin, 2018. "Mean-square dissipative methods for stochastic age-dependent capital system with fractional Brownian motion and jumps," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 81-92.
    19. Laaribi, Aziz & Boukanjime, Brahim & El Khalifi, Mohamed & Bouggar, Driss & El Fatini, Mohamed, 2023. "A generalized stochastic SIRS epidemic model incorporating mean-reverting Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    20. Wang, Lei & Wang, Kai & Jiang, Daqing & Hayat, Tasawar, 2018. "Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 522-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.