IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v559y2020ics037843712030532x.html
   My bibliography  Save this article

Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum

Author

Listed:
  • Yang, Xiaodong
  • Wang, Zhixiao
  • He, Aijun
  • Wang, Jun

Abstract

Human body surface electrocardiogram (ECG) is non-stationary and frequency-varying by nature that belongs to a typical nonlinear signal. Therefore, traditional linear and time–frequency​ analysis methods cannot fully disclose its nonlinear nature. Meanwhile, physiological complexity of heartbeat signal may vary with age, diseases, drug administrations, or even behavioral modifiers. To test the intrinsic relationships among them, we first put forward a theoretical model for nonlinear time series analysis and then took the generally accepted multifractal sets to verify it. Upon that, we then investigated the multifractal singularity spectrum areas of synchronous 12-lead ECG signals taken from crowds with different age stages, healthy conditions and drug medications. Our results suggested that aging and diseases can not only decrease multifractal complexity of the signals, but also increase inhomogeneity of it. With aging and deepening lesion, fractal-like structure of the heartbeat system is damaged or even structurally changed, which lead to the declination of physiological complexity and at the same time the increasement of irregularity and anisotropy of ECG signal’s propagation. In addition, the mean value of multifractal spectrum area of human 12-lead ECG signals also reflect the self-discipline regulation of human autonomic nervous system. The value descends with age growing or drug intervention to restrain sympathetic nerves. That suggest self-discipline control function weakens when people are getting old, or they are under repressed heartbeat activities with lower heart rate and lower blood pressure. Then, complexity of heartbeat signal declines and even tends to turn from multifractality to monofractality, which means drops off of human individual adaptability.

Suggested Citation

  • Yang, Xiaodong & Wang, Zhixiao & He, Aijun & Wang, Jun, 2020. "Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
  • Handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s037843712030532x
    DOI: 10.1016/j.physa.2020.125021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030532X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jun & Ning, Xinbao & Chen, Ying, 2003. "Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 561-568.
    2. Zhao, Huan & He, Shaofang, 2016. "Analysis of speech signals’ characteristics based on MF-DFA with moving overlapping windows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 343-349.
    3. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    4. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    5. Yang, Xiaodong & Ning, Xinbao & Wang, Jun, 2007. "Multifractal analysis of human synchronous 12-lead ECG signals using multiple scale factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 413-422.
    6. Ivanov, P.Ch & Rosenblum, M.G & Peng, C.-K & Mietus, J.E & Havlin, S & Stanley, H.E & Goldberger, A.L, 1998. "Scaling and universality in heart rate variability distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 249(1), pages 587-593.
    7. Ning, Xinbao & Xu, Yinlin & Wang, Jun & Ma, Xiaofei, 2005. "Approximate entropy analysis of short-term HFECG based on wave mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 475-483.
    8. López, Pilar & Tarquis, Ana M. & Matulka, Ania & Skadden, Benjamin & Redondo, José M., 2017. "Multiscaling properties on sequences of turbulent plumes images," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 128-136.
    9. Ivanov, Plamen Ch. & Chen, Zhi & Hu, Kun & Eugene Stanley, H., 2004. "Multiscale aspects of cardiac control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 685-704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billat, Véronique L. & Mille-Hamard, Laurence & Meyer, Yves & Wesfreid, Eva, 2009. "Detection of changes in the fractal scaling of heart rate and speed in a marathon race," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3798-3808.
    2. Yang, Xiaodong & Du, Sidan & Ning, Xinbao & Bian, Chunhua, 2008. "Mass exponent spectrum analysis of human ECG signals and its application to complexity detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3546-3554.
    3. Yang, Xiaodong & Ning, Xinbao & Wang, Jun, 2007. "Multifractal analysis of human synchronous 12-lead ECG signals using multiple scale factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 413-422.
    4. Chen, Yanguang, 2014. "Multifractals of central place systems: Models, dimension spectrums, and empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 266-282.
    5. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    6. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    7. Yao, Wenpo & Zhang, Yuping & Wang, Jun, 2018. "Quantitative analysis in nonlinear complexity detection of meditative heartbeats," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1060-1068.
    8. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    10. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Huo, Chengyu & Huang, Xiaolin & Zhuang, Jianjun & Hou, Fengzhen & Ni, Huangjing & Ning, Xinbao, 2013. "Quadrantal multi-scale distribution entropy analysis of heartbeat interval series based on a modified Poincaré plot," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3601-3609.
    12. Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    14. Lovallo, Michele & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Transition matrix analysis of earthquake magnitude sequences," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 33-43.
    15. Wang, Shujia & Yang, Zhuojin & Zheng, Xin & Ma, Zhuang, 2024. "Analysis of complex time series based on EEMD energy entropy plane," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    16. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    17. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    18. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    19. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Echeverria, Juan Carlos & Puebla, Hector, 2008. "Correlation analysis of chaotic trajectories from Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1157-1169.
    20. Olga Y. Uritskaya & Vadim M. Uritsky, 2015. "Predictability of price movements in deregulated electricity markets," Papers 1505.08117, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s037843712030532x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.