IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v344y2004i3p685-704.html
   My bibliography  Save this article

Multiscale aspects of cardiac control

Author

Listed:
  • Ivanov, Plamen Ch.
  • Chen, Zhi
  • Hu, Kun
  • Eugene Stanley, H.

Abstract

We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. We first review recent progress using wavelet-based multifractal analysis, magnitude and sign decomposition analysis and a new segmentation algorithm to quantify multiscale features of heartbeat interval series. We then investigate how heartbeat dynamics change with circadian influences and under pathologic conditions, and we discuss their possible relation to the underlaying cardiac control mechanisms. The analytic tools we discuss may be used on a wider range of physiologic signals.

Suggested Citation

  • Ivanov, Plamen Ch. & Chen, Zhi & Hu, Kun & Eugene Stanley, H., 2004. "Multiscale aspects of cardiac control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 685-704.
  • Handle: RePEc:eee:phsmap:v:344:y:2004:i:3:p:685-704
    DOI: 10.1016/j.physa.2004.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710401101X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivanov, P.Ch & Rosenblum, M.G & Peng, C.-K & Mietus, J.E & Havlin, S & Stanley, H.E & Goldberger, A.L, 1998. "Scaling and universality in heart rate variability distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 249(1), pages 587-593.
    2. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
    3. Havlin, S & Amaral, L.A.N & Ashkenazy, Y & Goldberger, A.L & Ivanov, P.Ch & Peng, C.-K & Stanley, H.E, 1999. "Application of statistical physics to heartbeat diagnosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 99-110.
    4. Ashkenazy, Yosef & Havlin, Shlomo & Ivanov, Plamen Ch. & Peng, Chung-K. & Schulte-Frohlinde, Verena & Stanley, H.Eugene, 2003. "Magnitude and sign scaling in power-law correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 19-41.
    5. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Dezhao & Wang, Zikuan & Li, Jin & Feng, Feilong & Hou, Fengzhen, 2020. "The chaotic characteristics detection based on multifractal detrended fluctuation analysis of the elderly 12-lead ECG signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Huo, Chengyu & Huang, Xiaolin & Zhuang, Jianjun & Hou, Fengzhen & Ni, Huangjing & Ning, Xinbao, 2013. "Quadrantal multi-scale distribution entropy analysis of heartbeat interval series based on a modified Poincaré plot," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3601-3609.
    3. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    4. Billat, Véronique L. & Mille-Hamard, Laurence & Meyer, Yves & Wesfreid, Eva, 2009. "Detection of changes in the fractal scaling of heart rate and speed in a marathon race," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3798-3808.
    5. Yao, Wenpo & Zhang, Yuping & Wang, Jun, 2018. "Quantitative analysis in nonlinear complexity detection of meditative heartbeats," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1060-1068.
    6. Yin, Yi & Shang, Pengjian & Xia, Jianan, 2015. "Compositional segmentation of time series in the financial markets," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 399-412.
    7. Yang, Xiaodong & Wang, Zhixiao & He, Aijun & Wang, Jun, 2020. "Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2009. "Fractality in electrocardiographic waveforms for healthy subjects and patients with ventricular fibrillation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1046-1054.
    2. Rodriguez, Eduardo & Echeverria, Juan C. & Alvarez-Ramirez, Jose, 2007. "Detrended fluctuation analysis of heart intrabeat dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 429-438.
    3. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    4. Bickel, David R. & Lai, Dejian, 2001. "Asymptotic distribution of time-series intermittency estimates: applications to economic and clinical data," Computational Statistics & Data Analysis, Elsevier, vol. 37(4), pages 419-431, October.
    5. Li, Jin & Chen, Chen & Yao, Qin & Zhang, Peng & Wang, Jun & Hu, Jing & Feng, Feilong, 2018. "The effect of circadian rhythm on the correlation and multifractality of heart rate signals during exercise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1207-1213.
    6. Yang, Xiaodong & Du, Sidan & Ning, Xinbao & Bian, Chunhua, 2008. "Mass exponent spectrum analysis of human ECG signals and its application to complexity detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3546-3554.
    7. Billat, Véronique L. & Mille-Hamard, Laurence & Meyer, Yves & Wesfreid, Eva, 2009. "Detection of changes in the fractal scaling of heart rate and speed in a marathon race," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3798-3808.
    8. Knežević, Andrea & Martinis, Mladen & Krstačić, Goran & Vargović, Emil, 2005. "Changes in multifractal properties for stable angina pectoris," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 358(2), pages 505-515.
    9. Liu, Yunxiao & Lin, Youfang & Jia, Ziyu & Wang, Jing & Ma, Yan, 2021. "A new dissimilarity measure based on ordinal pattern for analyzing physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Dudkowska, A. & Makowiec, D., 2004. "Sleep and wake phase of heart beat dynamics by artificial insymmetrised patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 174-180.
    11. Mahmoodi, Korosh & West, Bruce J. & Grigolini, Paolo, 2020. "On the dynamical foundation of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    13. Zhang, Yin & Li, Jin & Wang, Jun, 2017. "Exploring stability of entropy analysis for signal with different trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 60-67.
    14. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    15. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    16. Mirzayof, Dror & Ashkenazy, Yosef, 2010. "Preservation of long range temporal correlations under extreme random dilution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5573-5580.
    17. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    18. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    19. Kaufman, Miron & Zurcher, Ulrich & Sung, Paul S., 2007. "Entropy of electromyography time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 698-707.
    20. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:3:p:685-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.