IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i1p33-43.html
   My bibliography  Save this article

Transition matrix analysis of earthquake magnitude sequences

Author

Listed:
  • Lovallo, Michele
  • Lapenna, Vincenzo
  • Telesca, Luciano

Abstract

Estimation of complexity is a fascinating research topic in nonlinear signal and system analysis. Information theoretic functionals can be used to identify and quantify general relationships among variables; these relationships can be considered as the fingerprints of complexity. Up to now, the complexity of seismic sequences has been mostly related to the concept of self-similarity, suggesting that the earthquake dynamics can be interpreted as due to many components interacting over a wide range of time or space scales. This paper deals with a new idea of complexity of seismicity, focusing, in particular, on the transition probability between magnitudes. Using the Transition Matrix Method, a set of complexity parameters can be defined for earthquakes. Furthermore, the relationships among these parameters and those characterizing the earthquake magnitude dynamics have been analyzed in simulated and observational seismic sequences.

Suggested Citation

  • Lovallo, Michele & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Transition matrix analysis of earthquake magnitude sequences," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 33-43.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:1:p:33-43
    DOI: 10.1016/j.chaos.2004.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904004692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres, M.E. & Gamero, L.G., 2000. "Relative complexity changes in time series using information measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(3), pages 457-473.
    2. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunlai Wang & Cong Cao & Yubo Liu & Changfeng Li & Guangyong Li & Hui Lu, 2021. "Experimental investigation on synergetic prediction of rockburst using the dominant-frequency entropy of acoustic emission," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3253-3270, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    2. Dingle, Kamaludin & Kamal, Rafiq & Hamzi, Boumediene, 2023. "A note on a priori forecasting and simplicity bias in time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 777-784.
    4. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    5. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    7. Yulmetyev, Renat M. & Demin, Sergey A. & Panischev, Oleg Yu. & Hänggi, Peter, 2005. "Age-related alterations of relaxation processes and non-Markov effects in stochastic dynamics of R–R intervals variability from human ECGs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 336-352.
    8. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    9. Alvarez-Ramirez, J. & Ibarra-Valdez, C. & Rodriguez, E. & Urrea, R., 2007. "Fractality and time correlation in contemporary war," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1039-1049.
    10. Suárez-García, Pablo & Gómez-Ullate, David, 2014. "Multifractality and long memory of a financial index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 226-234.
    11. França, Lucas Gabriel Souza & Montoya, Pedro & Miranda, José Garcia Vivas, 2019. "On multifractals: A non-linear study of actigraphy data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 612-619.
    12. Pavlov, A.N. & Dubrovsky, A.I. & Koronovskii Jr, A.A. & Pavlova, O.N. & Semyachkina-Glushkovskaya, O.V. & Kurths, J., 2020. "Extended detrended fluctuation analysis of sound-induced changes in brain electrical activity," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Saha, Debajyoti & Shaw, Pankaj Kumar & Ghosh, Sabuj & Janaki, M.S. & Sekar Iyengar, A.N., 2018. "Quantification of scaling exponent with Crossover type phenomena for different types of forcing in DC glow discharge plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 300-310.
    14. Torres, H.M. & Gurlekian, J.A. & Rufiner, H.L. & Torres, M.E., 2006. "Self-organizing map clustering based on continuous multiresolution entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 337-354.
    15. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    16. Siqueira, Erinaldo Leite & Stošić, Tatijana & Bejan, Lucian & Stošić, Borko, 2010. "Correlations and cross-correlations in the Brazilian agrarian commodities and stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2739-2743.
    17. Yang, Xiaodong & Du, Sidan & Ning, Xinbao & Bian, Chunhua, 2008. "Mass exponent spectrum analysis of human ECG signals and its application to complexity detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3546-3554.
    18. Yang, Xiaodong & Wang, Zhixiao & He, Aijun & Wang, Jun, 2020. "Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    19. Billat, Véronique L. & Mille-Hamard, Laurence & Meyer, Yves & Wesfreid, Eva, 2009. "Detection of changes in the fractal scaling of heart rate and speed in a marathon race," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3798-3808.
    20. Yang, Xiaodong & Ning, Xinbao & Wang, Jun, 2007. "Multifractal analysis of human synchronous 12-lead ECG signals using multiple scale factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 413-422.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:1:p:33-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.