IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics096007792100151x.html
   My bibliography  Save this article

Intermittent event evaluation through a multifractal approach for variable density jets

Author

Listed:
  • Viggiano, Bianca
  • Sakradse, Greg
  • Smith, Sarah
  • Mungin, Rihana
  • Ramasubramanian, Pradeep
  • Ringle, Dan
  • Travis, Kristin
  • Ali, Naseem
  • Solovitz, Stephen
  • Cal, Raúl Bayoán

Abstract

Variable-density jets occur in many systems, including geophysical flows and industrial applications, exhibiting a large range of scales of Reynolds and Richardson numbers. A series of jets with varying densities was ejected vertically into a large ambient region. Using particle image velocimetry, the near-exit velocity fields were measured for three different gases exhausting into air: helium, air and argon. Experiments considered relatively low Reynolds numbers from approximately 1500 to 5500 with Richardson numbers near 0.001 in magnitude. These included a variety of flow responses, notably nearly laminar, turbulent and transitioning jet flows. Flows were examined through a multifractal framework, and the singularity spectrum showed the characteristics of the flow based on the evolution in the streamwise and wall-normal direction. The variation of the Hölder exponent displayed the asymmetry and intermittency of the flow. Similar to the Reynolds shear stress, the development of intermittent behavior is a function of downstream location with respect to changes in the Reynolds number. The density of the exiting jet also influences the location of high intermittency within the flow signal. Lower density jets provide increased variability of the signal within the ambient air and the shear layer close to the exit of the jet. Specifically, the highest degree of multifractality is observed within the mixing layer of the helium jet at a transitioning Reynolds number. Conditional averaging with respect to the fluctuating velocity components and the pointwise Hölder exponent reveals high velocity-intermittency interactions at the inside of the jet mixing layer when fluid is entrained and at the turbulent/non-turbulent interface when fluid is ejected. Finally, line integral convolution illustrates the impact of turbulent/non-turbulent interface on the jet dynamics.

Suggested Citation

  • Viggiano, Bianca & Sakradse, Greg & Smith, Sarah & Mungin, Rihana & Ramasubramanian, Pradeep & Ringle, Dan & Travis, Kristin & Ali, Naseem & Solovitz, Stephen & Cal, Raúl Bayoán, 2021. "Intermittent event evaluation through a multifractal approach for variable density jets," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s096007792100151x
    DOI: 10.1016/j.chaos.2021.110799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100151X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Naseem & Cal, Raúl Bayoán, 2019. "Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 215-229.
    2. López, Pilar & Tarquis, Ana M. & Matulka, Ania & Skadden, Benjamin & Redondo, José M., 2017. "Multiscaling properties on sequences of turbulent plumes images," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 128-136.
    3. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Naseem & Cal, Raúl Bayoán, 2019. "Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 215-229.
    2. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Smith, Sarah E. & Travis, Kristin N. & Djeridi, Henda & Obligado, Martín & Cal, Raúl Bayoán, 2021. "Dynamic effects of inertial particles on the wake recovery of a model wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 346-361.
    5. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    6. Yang, Xiaodong & Wang, Zhixiao & He, Aijun & Wang, Jun, 2020. "Identification of healthy and pathological heartbeat dynamics based on ECG-waveform using multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    7. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s096007792100151x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.