Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2013.05.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Solovey, Guillermo & Peruani, Fernando & Ponce Dawson, Silvina & Maria Zorzenon dos Santos, Rita, 2004. "On cell resistance and immune response time lag in a model for the HIV infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 543-556.
- Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
- Benyoussef, A & HafidAllah, N.El & ElKenz, A & Ez-Zahraouy, H & Loulidi, M, 2003. "Dynamics of HIV infection on 2D cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 506-520.
- Figueirêdo, P.H. & Coutinho, S. & Zorzenon dos Santos, R.M., 2008. "Robustness of a cellular automata model for the HIV infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6545-6552.
- David D. Ho & Avidan U. Neumann & Alan S. Perelson & Wen Chen & John M. Leonard & Martin Markowitz, 1995. "Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection," Working Papers 95-01-002, Santa Fe Institute.
- Pandey, R.B., 1991. "Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 179(3), pages 442-470.
- Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
- Hulin Wu & A. Adam Ding, 1999. "Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials," Biometrics, The International Biometric Society, vol. 55(2), pages 410-418, June.
- Tae-Wook Chun & Lucy Carruth & Diana Finzi & Xuefei Shen & Joseph A. DiGiuseppe & Harry Taylor & Monika Hermankova & Karen Chadwick & Joseph Margolick & Thomas C. Quinn & Yen-Hong Kuo & Ronald Brookme, 1997. "Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection," Nature, Nature, vol. 387(6629), pages 183-188, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- González, Ramón E.R. & Figueirêdo, P.H. & Coutinho, S., 2020. "Dynamics of HIV Infection: An entropic–energetic view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Akdim, Khadija & Ez-zetouni, Adil & Danane, Jaouad & Allali, Karam, 2020. "Stochastic viral infection model with lytic and nonlytic immune responses driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Hillmann, Andreas & Crane, Martin & Ruskin, Heather J., 2017. "HIV models for treatment interruption: Adaptation and comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 44-56.
- Burkhead, Emily & Hawkins, Jane, 2015. "A cellular automata model of Ebola virus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 424-435.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González, Ramón E.R. & Figueirêdo, P.H. & Coutinho, S., 2020. "Dynamics of HIV Infection: An entropic–energetic view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
- Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.
- A. Adam Ding & Hulin Wu, 2000. "A Comparison Study of Models and Fitting Procedures for Biphasic Viral Dynamics in HIV-1 Infected Patients Treated with Antiviral Therapies," Biometrics, The International Biometric Society, vol. 56(1), pages 293-300, March.
- Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
- Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
- Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
- Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.
- Huang, Yangxin, 2008. "Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3765-3778, March.
- Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
- Sun, Hongquan & Li, Jin, 2020. "A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
- Mo, Youbin & Ren, Bin & Yang, Wencao & Shuai, Jianwei, 2014. "The 3-dimensional cellular automata for HIV infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 31-39.
- A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
- Dacheng Liu & Tao Lu & Xu-Feng Niu & Hulin Wu, 2011. "Mixed-Effects State-Space Models for Analysis of Longitudinal Dynamic Systems," Biometrics, The International Biometric Society, vol. 67(2), pages 476-485, June.
- Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
- Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
- Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
- Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
- Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
More about this item
Keywords
Cellular automata; HIV infection; Pattern formation; Population dynamics; Drug therapies;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4701-4716. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.