IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v66y2004i1p55-67.html
   My bibliography  Save this article

Stochastic sensitivity of 3D-cycles

Author

Listed:
  • Bashkirtseva, I.A.
  • Ryashko, L.B.

Abstract

The limit cycles of nonlinear systems under the small stochastic disturbances are considered. The random trajectories of forced system leave the deterministic cycle and form some stochastic bundle around it. The probabilistic description of this bundle near cycle based on stochastic sensitivity function (SSF) is suggested. The SSF is a covariance matrix for periodic solution of linear stochastic first approximation system. This matrix is a solution of the boundary problem for linear matrix differential equation. For 3D-cycles this matrix differential equation on the basis of singular expansion is reduced to the system of three scalar equations only. The possibilities of SSF to describe some peculiarities of stochastically forced Roessler model are demonstrated.

Suggested Citation

  • Bashkirtseva, I.A. & Ryashko, L.B., 2004. "Stochastic sensitivity of 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(1), pages 55-67.
  • Handle: RePEc:eee:matcom:v:66:y:2004:i:1:p:55-67
    DOI: 10.1016/j.matcom.2004.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475404000783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2004.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bashkirtseva, I.A & Ryashko, L.B, 2000. "Sensitivity analysis of the stochastically and periodically forced Brusselator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 126-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Bashkirtseva, Irina & Ryashko, Lev & Schurz, Henri, 2009. "Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 72-82.
    3. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    4. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.
    5. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    6. Mandal, Partha Sarathi, 2018. "Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 40-52.
    7. Irina Bashkirtseva & Makar Pavletsov & Tatyana Perevalova & Lev Ryashko, 2023. "Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    8. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Yihan Wang & Jinjie Zhu, 2023. "Spatial Effects of Phase Dynamics on Oscillators Close to Bifurcation," Mathematics, MDPI, vol. 11(11), pages 1-10, June.
    10. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2020. "Noise-induced shifts in dynamics of multi-rhythmic population SIP-model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Slepukhina, E. & Ryashko, L. & Kügler, P., 2020. "Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashkirtseva, Irina & Ryashko, Lev, 2017. "Stochastic sensitivity analysis of noise-induced order-chaos transitions in discrete-time systems with tangent and crisis bifurcations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 573-584.
    2. Bashkirtseva, Irina & Ryashko, Lev, 2013. "Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 295-306.
    3. Bashkirtseva, I. & Ryashko, L., 2020. "Analysis of noise-induced phenomena in the nonlinear tumor–immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    5. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    6. Mandal, Partha Sarathi, 2018. "Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 40-52.
    7. Bashkirtseva, Irina & Ryashko, Lev, 2005. "Sensitivity and chaos control for the forced nonlinear oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1437-1451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:66:y:2004:i:1:p:55-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.