IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v544y2020ics0378437119319181.html
   My bibliography  Save this article

Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation

Author

Listed:
  • Hayat, Tasawar
  • Kanwal, Mehreen
  • Qayyum, Sumaira
  • Alsaedi, Ahmed

Abstract

This article aims to analyze flow of Jeffrey nanofluid. Entropy generation with Joule heating, activation energy, viscous dissipation and nonlinear thermal radiation is discussed. Brownian motion and thermophoresis impacts are also studied. Stretching sheet of variable thickness is considered. Homotopic convergent solutions are developed by using OHAM. Governing nonlinear equations are developed. Effects of the influential variables are addressed. Higher Deborah number have reverse effect on temperature and concentration when compared with velocity. Larger Deborah number decays fluid velocity while temperature and concentration are enhanced. Temperature and concentration of fluid are enhanced for thermophoresis parameter. Concentration and temperature for Brownian motion have reverse effect. Entropy generation enhances for larger Deborah, Hartmann and Brinkman numbers while Bejan number has opposite effects.

Suggested Citation

  • Hayat, Tasawar & Kanwal, Mehreen & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
  • Handle: RePEc:eee:phsmap:v:544:y:2020:i:c:s0378437119319181
    DOI: 10.1016/j.physa.2019.123437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119319181
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbas, Z. & Sheikh, M. & Motsa, S.S., 2016. "Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation," Energy, Elsevier, vol. 95(C), pages 12-20.
    2. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed E. Nasr & Machireddy Gnaneswara Reddy & W. Abbas & Ahmed M. Megahed & Essam Awwad & Khalil M. Khalil, 2022. "Analysis of Non-Linear Radiation and Activation Energy Analysis on Hydromagnetic Reiner–Philippoff Fluid Flow with Cattaneo–Christov Double Diffusions," Mathematics, MDPI, vol. 10(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Malik Zaka & Alshomrani, Ali Saleh & Alghamdi, Metib, 2020. "Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    3. Salahuddin, T. & Siddique, Nazim & Arshad, Maryam, 2020. "Insight into the dynamics of the Non-Newtonian Casson fluid on a horizontal object with variable thickness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 211-231.
    4. Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Fahd Almutairi & S.M. Khaled & Abdelhalim Ebaid, 2019. "MHD Flow of Nanofluid with Homogeneous-Heterogeneous Reactions in a Porous Medium under the Influence of Second-Order Velocity Slip," Mathematics, MDPI, vol. 7(3), pages 1-11, February.
    6. Saif, Rai Sajjad & Muhammad, Taseer & Sadia, Haleema & Ellahi, Rahmat, 2020. "Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Hayat, Tasawar & Masood, Faria & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    8. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Ramesh, G.K., 2020. "Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    11. Ahmed, Jawad & Khan, Masood & Ahmad, Latif, 2020. "Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Khan, Sami Ullah & Shehzad, Sabir Ali, 2020. "Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    13. Ahmed Zeeshan & Nouman Ijaz & Tehseen Abbas & Rahmat Ellahi, 2018. "The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    14. Hayat, T. & Yaqoob, Rabiya & Qayyum, Sumaira & Alsaedi, A., 2020. "Entropy generation optimization in nanofluid flow by variable thicked sheet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Muhammad, Taseer & Rafique, Kiran & Asma, Mir & Alghamdi, Metib, 2020. "Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    16. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
    17. Pardeep Kumar & Hemant Poonia & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2023. "Significance of Weissenberg Number, Soret Effect and Multiple Slips on the Dynamic of Biconvective Magnetohydrodynamic Carreau Nanofuid Flow," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    18. Ali, Mehboob & Khan, Waqar Azeem & Sultan, Faisal & Shahzad, Muhammad, 2020. "Numerical investigation on thermally radiative time-dependent Sisko nanofluid flow for curved surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    19. Khalil Ur Rehman & Wasfi Shatanawi & Andaç Batur Çolak, 2023. "Artificial Neural Networking Magnification for Heat Transfer Coefficient in Convective Non-Newtonian Fluid with Thermal Radiations and Heat Generation Effects," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    20. Khan, M. Ijaz & Khan, M. Waleed Ahmad & Alsaedi, A. & Hayat, T. & Khan, M. Imran, 2020. "Entropy generation optimization in flow of non-Newtonian nanomaterial with binary chemical reaction and Arrhenius activation energy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:544:y:2020:i:c:s0378437119319181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.