IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315875.html
   My bibliography  Save this article

Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators

Author

Listed:
  • Zhang, Kaiyu
  • Wang, Yibai
  • Tang, Haibin
  • Li, Yong
  • Wang, Baojun
  • York, Thomas M.
  • Yang, Lijun

Abstract

The azimuthal Lorentz-force-driven magnetohydrodynamic swirling flow between coaxial cylindrical electrodes with an imposed axial magnetic field has extensive application in the swirling actuators. To identify the mechanism of energy conversion within the flow-discharge nonlinearly coupled field, we develop a 2-D analytical functional model bridging the gap between the imposed magnetic field distribution and the magnetohydrodynamic fields. With Hall effect present, the analytical solution is found to be controlled by the Reynolds number and a newly defined dimensionless number (K) deduced from the Hartmann number and the Hall parameter. The solution is confirmed with numerical and experimental results. By virtue of its analytic nature, the model provides more convenient insight and understanding into energy coupling and efficiency optimization. Based on this model, the nonlinear coupling relationship between the total voltage and the electromotive force is identified. The most striking contribution is the identification of double barriers, induced by Hall effect and viscosity, to maximize system efficiency through the model. To achieve efficiency maximization, the optimum magnetic field distribution is found by solution of the functional extremum problem derived from the analytical model.

Suggested Citation

  • Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315875
    DOI: 10.1016/j.energy.2020.118479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalir, Nemat & Dehsara, Mohammad & Nourazar, S. Salman, 2015. "Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet," Energy, Elsevier, vol. 79(C), pages 351-362.
    2. Khalili, Sufia & Jafarian Dehkordi, Ali & Giahi, Mohammad Hossein, 2015. "Investigating the effect of channel angle of a subsonic MHD (Magneto-Hydro-Dynamic) generator on optimum efficiency of a triple combined cycle," Energy, Elsevier, vol. 85(C), pages 543-555.
    3. Akbar, Noreen Sher, 2015. "Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field," Energy, Elsevier, vol. 82(C), pages 23-30.
    4. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    5. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    6. Raftari, Behrouz & Parvaneh, Foroud & Vajravelu, Kuppalapalle, 2013. "Homotopy analysis of the magnetohydrodynamic flow and heat transfer of a second grade fluid in a porous channel," Energy, Elsevier, vol. 59(C), pages 625-632.
    7. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    8. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    9. Sun, Yajing & Chen, Gang & Duan, Bo & Li, Guodong & Zhai, Pengcheng, 2019. "An annular thermoelectric couple analytical model by considering temperature-dependent material properties and Thomson effect," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Guoxu & Wang, Dongxing & Tian, Shiyi & Ren, Mingyuan & Song, Mingxin, 2021. "Effect of microstructure and contact interfaces of cobalt MOFs-derived carbon matrix composite electrode materials on lithium storage performance," Energy, Elsevier, vol. 222(C).
    2. Yang, Rui & Wang, Junxiang & Wu, Zhanghua & Huang, Bangdou & Luo, Ercang, 2023. "Performance analysis of thermoacoustic plasma MHD generation," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janardhana Reddy, G. & Kumar, Mahesh & Anwar Beg, O., 2018. "Effect of temperature dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 426-445.
    2. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    3. Deng, Jiewen & Su, Yangyang & Peng, Chenwei & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng & Zhang, Hui, 2023. "How to improve the energy performance of mid-deep geothermal heat pump systems: Optimization of heat pump, system configuration and control strategy," Energy, Elsevier, vol. 285(C).
    4. Shen, Junhao & Zhou, Chaohui & Luo, Yongqiang & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Ling, Zhang, 2023. "Comprehensive thermal performance analysis and optimization study on U-type deep borehole ground source heat pump systems based on a new analytical model," Energy, Elsevier, vol. 274(C).
    5. Sahoo, Rashmi Rekha & Karana, Dhruv Raj, 2020. "Effect of design shape factor on exergonic performance of a new modified extended-tapering segmented thermoelectric generator system," Energy, Elsevier, vol. 200(C).
    6. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    7. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    8. Awais, M., 2015. "Applications of the Numerical Inversion of the Laplace transform to unsteady problems of the third grade fluid," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 228-234.
    9. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Zhang, Fangfang & Fang, Liang & Jia, Linrui & Man, Yi & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2021. "A dimension reduction algorithm for numerical simulation of multi-borehole heat exchangers," Renewable Energy, Elsevier, vol. 179(C), pages 2235-2245.
    11. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    12. Ahmed, Jawad & Khan, Masood & Ahmad, Latif, 2020. "Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    14. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    15. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    16. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    17. Kalmár, László & Medgyes, Tamás & Szanyi, János, 2020. "Specifying boundary conditions for economical closed loop deep geothermal heat production," Energy, Elsevier, vol. 196(C).
    18. Zhang, Fangfang & Yu, Mingzhi & Sørensen, Bjørn R. & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2022. "Heat extraction capacity and its attenuation of deep borehole heat exchanger array," Energy, Elsevier, vol. 254(PA).
    19. Ali, Farhad & Murtaza, Saqib & Sheikh, Nadeem Ahmad & Khan, Ilyas, 2019. "Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 1-15.
    20. Khan, Mair & Shahid, Amna & Salahuddin, T. & Malik, M.Y. & Hussain, Arif, 2020. "Analysis of two dimensional Carreau fluid flow due to normal surface condition: A generalized Fourier’s and Fick’s laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.