IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics0378437119322265.html
   My bibliography  Save this article

Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer

Author

Listed:
  • Ullah, Malik Zaka
  • Alshomrani, Ali Saleh
  • Alghamdi, Metib

Abstract

This article deals with three-dimensional rotating flow of nanomaterial in the presence of activation energy and thermal radiation embedded in non-Darcian porous medium. Convection of heat and mass exchange is given due consideration. The novel attributes of Brownian motion and thermophoresis are accounted. The resulting differential frameworks have been solved by NDSolve method. The graphical representations inspect the results of different sundry variables. Heat and mass transfer rates are additionally processed and analyzed. Our results depict that the temperature and concentration are enhanced for larger values of porosity and Forchheimer numbers.

Suggested Citation

  • Ullah, Malik Zaka & Alshomrani, Ali Saleh & Alghamdi, Metib, 2020. "Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119322265
    DOI: 10.1016/j.physa.2019.124024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322265
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.124024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbas, Z. & Sheikh, M. & Motsa, S.S., 2016. "Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation," Energy, Elsevier, vol. 95(C), pages 12-20.
    2. Tasawar Hayat & Arsalan Aziz & Taseer Muhammad & Bashir Ahmad, 2015. "Influence of Magnetic Field in Three-Dimensional Flow of Couple Stress Nanofluid over a Nonlinearly Stretching Surface with Convective Condition," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    3. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    4. Tasawar Hayat & Arsalan Aziz & Taseer Muhammad & Ahmed Alsaedi, 2017. "A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saif, Rai Sajjad & Muhammad, Taseer & Sadia, Haleema & Ellahi, Rahmat, 2020. "Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    3. Hayat, Tasawar & Kanwal, Mehreen & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Hayat, Tasawar & Riaz, Rubina & Aziz, Arsalan & Alsaedi, Ahmed, 2020. "Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Salahuddin, T. & Siddique, Nazim & Arshad, Maryam, 2020. "Insight into the dynamics of the Non-Newtonian Casson fluid on a horizontal object with variable thickness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 211-231.
    6. Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Fahd Almutairi & S.M. Khaled & Abdelhalim Ebaid, 2019. "MHD Flow of Nanofluid with Homogeneous-Heterogeneous Reactions in a Porous Medium under the Influence of Second-Order Velocity Slip," Mathematics, MDPI, vol. 7(3), pages 1-11, February.
    8. Hayat, Tasawar & Masood, Faria & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    9. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Ramesh, G.K., 2020. "Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    11. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    12. Ghulam Rasool & Ting Zhang, 2019. "Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
    13. Ahmed, Jawad & Khan, Masood & Ahmad, Latif, 2020. "Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    14. Khan, Sami Ullah & Shehzad, Sabir Ali, 2020. "Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Ahmed Zeeshan & Nouman Ijaz & Tehseen Abbas & Rahmat Ellahi, 2018. "The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    16. Hayat, T. & Yaqoob, Rabiya & Qayyum, Sumaira & Alsaedi, A., 2020. "Entropy generation optimization in nanofluid flow by variable thicked sheet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Samuel Olumide Adesanya & Tunde Abdulkadir Yusuf & Ramoshweu Solomon Lebelo, 2022. "Numerical Investigation of the Magnetized Reactive Viscous Couple Stress Fluid Flow Down an Inclined Riga Plate with Variable Viscosity," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
    18. Muhammad, Taseer & Rafique, Kiran & Asma, Mir & Alghamdi, Metib, 2020. "Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    19. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).
    20. Pardeep Kumar & Hemant Poonia & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2023. "Significance of Weissenberg Number, Soret Effect and Multiple Slips on the Dynamic of Biconvective Magnetohydrodynamic Carreau Nanofuid Flow," Mathematics, MDPI, vol. 11(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119322265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.