Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.11.039
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
- Khalil Ur Rehman & Wasfi Shatanawi & Andaç Batur Çolak, 2023. "Artificial Neural Networking Magnification for Heat Transfer Coefficient in Convective Non-Newtonian Fluid with Thermal Radiations and Heat Generation Effects," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
- Ramesh, G.K., 2020. "Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
- Hayat, Tasawar & Kanwal, Mehreen & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
- Ullah, Malik Zaka & Alshomrani, Ali Saleh & Alghamdi, Metib, 2020. "Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
- Hayat, Tasawar & Riaz, Rubina & Aziz, Arsalan & Alsaedi, Ahmed, 2020. "Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Salahuddin, T. & Siddique, Nazim & Arshad, Maryam, 2020. "Insight into the dynamics of the Non-Newtonian Casson fluid on a horizontal object with variable thickness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 211-231.
- Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
More about this item
Keywords
Unsteady flow; Casson fluid; Stretching/shrinking sheet; Thermal radiation; Binary chemical reaction; Numerical solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:12-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.