IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v248y1998i1p165-175.html
   My bibliography  Save this article

Representation of random walk in fractal space-time

Author

Listed:
  • Kanno, Ryutaro

Abstract

To analyze the anomalous diffusion on a fractal structure with fractal in the time axis, we propose a statistical representation given by a path integral method in arbitrary fractal space-time. Using the method, we can understand easily several properties of the non-Gaussian-type behavior, and a differential equation for the path integral is derived. Finally, to check the validity of this theory, analytical results in this paper are applied to the random walk on the two-dimensional Sierpinski carpet, which agree precisely with numerical results by Monte Carlo simulations in the paper of Fujiwara and Yonezawa [Phys. Rev. E 51 (1995) 2277].

Suggested Citation

  • Kanno, Ryutaro, 1998. "Representation of random walk in fractal space-time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 248(1), pages 165-175.
  • Handle: RePEc:eee:phsmap:v:248:y:1998:i:1:p:165-175
    DOI: 10.1016/S0378-4371(97)00422-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437197004226
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(97)00422-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. West, Bruce J. & Shlesinger, Michael, 1984. "Random walk model of impact phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 127(3), pages 490-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Atangana, Abdon & Khan, Muhammad Altaf, 2019. "Validity of fractal derivative to capturing chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 50-59.
    4. Chen, Wen & Hei, Xindong & Sun, Hongguang & Hu, Dongliang, 2018. "Stretched exponential stability of nonlinear Hausdorff dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 259-264.
    5. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    6. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    7. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2022. "On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels," Mathematics, MDPI, vol. 10(7), pages 1-23, March.
    8. Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hughes, Barry D., 1986. "On returns to the starting site in lattice random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 134(2), pages 443-457.
    2. Helbing, Dirk, 1992. "Interrelations between stochastic equations for systems with pair interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 181(1), pages 29-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:248:y:1998:i:1:p:165-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.