IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119315298.html
   My bibliography  Save this article

Stochastic characteristics of a chemostat model with variable yield

Author

Listed:
  • Yan, Rong
  • Sun, Shulin

Abstract

In this paper, a stochastic chemostat model with variable yield is investigated. The environment noises are given by independent standard Brownian motions, and the yield coefficient reflecting the conversion of nutrient to microorganism varies depending on the ambient nutrient. First, we give that the stochastic system has a unique global positive solution. Second, the sufficient conditions for the extinction and strong persistence in the mean of the microorganism are established. Third, by using stochastic Lyapunov function, the existence of a unique stationary distribution to the stochastic model is studied. In addition, some numerical simulations are carried to illustrate the theoretical results and the influence of the variable yield on the microorganism.

Suggested Citation

  • Yan, Rong & Sun, Shulin, 2020. "Stochastic characteristics of a chemostat model with variable yield," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315298
    DOI: 10.1016/j.physa.2019.122681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315298
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Shulin & Zhang, Xiaolu, 2018. "A stochastic chemostat model with an inhibitor and noise independent of population sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1763-1781.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    3. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    4. Campillo, F. & Joannides, M. & Larramendy-Valverde, I., 2011. "Stochastic modeling of the chemostat," Ecological Modelling, Elsevier, vol. 222(15), pages 2676-2689.
    5. Fu, Guifang & Ma, Wanbiao, 2006. "Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 845-850.
    6. Sun, Shulin & Sun, Yaru & Zhang, Guang & Liu, Xinzhi, 2017. "Dynamical behavior of a stochastic two-species Monod competition chemostat model," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 153-170.
    7. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 414-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    4. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Mu, Yu & Li, Zuxiong, 2023. "Bifurcation dynamics of a delayed chemostat system with spatial diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 186-204.
    6. Liu, Rong & Ma, Wanbiao, 2021. "Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Li, Qiuyue & Cong, Fuzhong & Liu, Tianbao & Zhou, Yaoming, 2020. "Stationary distribution of a stochastic HIV model with two infective stages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    9. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a regime-switching predator–prey model with anti-predator behaviour and higher-order perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 199-210.
    12. Kim, Sangkwon & Park, Jintae & Lee, Chaeyoung & Jeong, Darae & Choi, Yongho & Kwak, Soobin & Kim, Junseok, 2020. "Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Gao, Miaomiao & Jiang, Daqing, 2019. "Ergodic stationary distribution of a stochastic chemostat model with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 491-502.
    14. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    15. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    17. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    18. He, Lingyun & Banihashemi, Seddigheh & Jafari, Hossein & Babaei, Afshin, 2021. "Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    19. Wang, Liang & Jiang, Daqing, 2017. "Periodic solution for the stochastic chemostat with general response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 378-385.
    20. Lu, Chun, 2021. "Dynamics of a stochastic Markovian switching predator–prey model with infinite memory and general Lévy jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 316-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.