IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921003052.html
   My bibliography  Save this article

Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect

Author

Listed:
  • Liu, Rong
  • Ma, Wanbiao

Abstract

A novel stochastic chemostat model with two complementary nutrients and flocculation effect is considered in this paper. Firstly, the well-posedness of the stochastic chemostat model is considered. Then, by constructing appropriate stochastic Lyapunov functions, some sufficient conditions for the existence of an ergodic stationary distribution and persistence of the stochastic model are given. The results show that the microorganisms in chemostat can be collected continuously. Furthermore, based on sensitivity analysis techniques, some control strategies are discussed. Finally, we carry out some numerical simulations to illustrate the applications of theoretical results and give the empirical probability densities in numerical forms. In particular, the numerical simulations show that, when the random fluctuation of the environment is large, the growth of the microorganisms in chemostat can be transformed from the state of tending to extinction to the state of persistence. The interesting observation reveals that the random fluctuation may have positive biological effects and we call it the noise-induced stochastic transition phenomenon.

Suggested Citation

  • Liu, Rong & Ma, Wanbiao, 2021. "Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003052
    DOI: 10.1016/j.chaos.2021.110951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    2. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    3. Sun, Shulin & Zhang, Xiaolu, 2018. "A stochastic chemostat model with an inhibitor and noise independent of population sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1763-1781.
    4. Campillo, F. & Joannides, M. & Larramendy-Valverde, I., 2011. "Stochastic modeling of the chemostat," Ecological Modelling, Elsevier, vol. 222(15), pages 2676-2689.
    5. Wang, Liang & Jiang, Daqing, 2017. "Periodic solution for the stochastic chemostat with general response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 378-385.
    6. Xu, Chaoqun & Yuan, Sanling & Zhang, Tonghua, 2018. "Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 891-902.
    7. Yajie Li & Xinzhu Meng, 2019. "Dynamics of an Impulsive Stochastic Nonautonomous Chemostat Model with Two Different Growth Rates in a Polluted Environment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Mu & Zuxiong Li & Huili Xiang & Hailing Wang, 2019. "Dynamical Analysis of a Stochastic Multispecies Turbidostat Model," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    2. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Mu, Yu & Lo, Wing-Cheong, 2021. "Stochastic dynamics of populations with refuge in polluted turbidostat," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    5. Zhang, Xiaofeng & Yuan, Rong, 2021. "A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Liu, Guodong & Meng, Xinzhu, 2019. "Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    7. Yan, Rong & Sun, Shulin, 2020. "Stochastic characteristics of a chemostat model with variable yield," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    8. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    9. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
    10. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    11. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    12. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    13. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    14. Wang, Liang & Jiang, Daqing, 2017. "Periodic solution for the stochastic chemostat with general response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 378-385.
    15. Irina Bashkirtseva, 2021. "Controlling Stochastic Sensitivity by Feedback Regulators in Nonlinear Dynamical Systems with Incomplete Information," Mathematics, MDPI, vol. 9(24), pages 1-12, December.
    16. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Lv, Xuejin & Meng, Xinzhu & Wang, Xinzeng, 2018. "Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 273-279.
    20. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.