IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v486y2017icp378-385.html
   My bibliography  Save this article

Periodic solution for the stochastic chemostat with general response function

Author

Listed:
  • Wang, Liang
  • Jiang, Daqing

Abstract

This paper addresses a stochastic chemostat model with periodic dilution rate and general class of response functions. The general functional response is assumed to satisfy two classifications of conditions, and these assumptions on the functional response are relative weak that are valid for many forms of growth response. For the chemostat with periodic dilution rate, we derive the sufficient criteria for the existence of the stochastic nontrivial positive periodic solution, by utilizing Khasminskii’s theory on periodic Markov process.

Suggested Citation

  • Wang, Liang & Jiang, Daqing, 2017. "Periodic solution for the stochastic chemostat with general response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 378-385.
  • Handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:378-385
    DOI: 10.1016/j.physa.2017.05.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117306167
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campillo, F. & Joannides, M. & Larramendy-Valverde, I., 2011. "Stochastic modeling of the chemostat," Ecological Modelling, Elsevier, vol. 222(15), pages 2676-2689.
    2. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    3. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Rong & Ma, Wanbiao, 2021. "Noise-induced stochastic transition: A stochastic chemostat model with two complementary nutrients and flocculation effect," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz & Pettersson, Roger, 2018. "A stochastic viral infection model driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 446-452.
    2. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz & Pettersson, Roger & Taki, Regragui, 2017. "A stochastic SIRS epidemic model incorporating media coverage and driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 60-68.
    3. Fritsch, Coralie & Harmand, Jérôme & Campillo, Fabien, 2015. "A modeling approach of the chemostat," Ecological Modelling, Elsevier, vol. 299(C), pages 1-13.
    4. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    5. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
    7. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    8. Boukanjime, Brahim & El Fatini, Mohamed & Laaribi, Aziz & Taki, Regragui, 2019. "Analysis of a deterministic and a stochastic epidemic model with two distinct epidemics hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. Selvan, T. Tamil & Kumar, M., 2023. "Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms and saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    10. Lifan Chen & Xingwang Yu & Sanling Yuan, 2022. "Effects of Random Environmental Perturbation on the Dynamics of a Nutrient–Phytoplankton–Zooplankton Model with Nutrient Recycling," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    11. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    12. Zhang, Xiaofeng & Yuan, Rong, 2021. "Forward attractor for stochastic chemostat model with multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Serrano, Daniel Hernández & Villarroel, Javier & Hernández-Serrano, Juan & Tocino, Ángel, 2023. "Stochastic simplicial contagion model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    15. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    16. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    17. Yu Mu & Zuxiong Li & Huili Xiang & Hailing Wang, 2019. "Dynamical Analysis of a Stochastic Multispecies Turbidostat Model," Complexity, Hindawi, vol. 2019, pages 1-18, January.
    18. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    19. Berrhazi, Badr-eddine & El Fatini, Mohamed & Laaribi, Aziz, 2018. "A stochastic threshold for an epidemic model with Beddington–DeAngelis incidence, delayed loss of immunity and Lévy noise perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 312-320.
    20. Rifhat, Ramziya & Wang, Lei & Teng, Zhidong, 2017. "Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:378-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.