IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v105y2017icp279-287.html
   My bibliography  Save this article

Spatial analysis of cities using Renyi entropy and fractal parameters

Author

Listed:
  • Chen, Yanguang
  • Feng, Jian

Abstract

The spatial distributions of cities fall into two groups: one is the simple distribution with characteristic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, spatial entropy can be used to measure any types of urban distributions. This paper is devoted to generalizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The main method is mathematical derivation and empirical analysis, and the theoretical foundation is the discovery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, a set of useful spatial indexes termed “generalized multifractal indicators” are defined for geographical analysis. These indexes can be employed to describe both the simple distributions and complex distributions. The generalized multifractal indexes are applied to the population density distribution of Hangzhou city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou's urban morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce a new methodology for spatial analysis of city development.

Suggested Citation

  • Chen, Yanguang & Feng, Jian, 2017. "Spatial analysis of cities using Renyi entropy and fractal parameters," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 279-287.
  • Handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:279-287
    DOI: 10.1016/j.chaos.2017.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917304344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    2. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    3. Chen, Yanguang, 2014. "Multifractals of central place systems: Models, dimension spectrums, and empirical analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 266-282.
    4. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    5. Y. Bar-Yam, 2004. "Multiscale Complexity/Entropy," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 47-63.
    6. Chen, Yanguang & Jiang, Shiguo, 2009. "An analytical process of the spatio-temporal evolution of urban systems based on allometric and fractal ideas," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortiz-Vilchis, Pilar & Lei, Mingli & Ramirez-Arellano, Aldo, 2024. "Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Stepinski, Tomasz F. & Dmowska, Anna, 2020. "Complexity in patterns of racial segregation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Saeedimoghaddam, Mahmoud & Stepinski, T.F. & Dmowska, Anna, 2020. "Rényi’s spectra of urban form for different modalities of input data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Saeedimoghaddam, Mahmoud & Stepinski, T.F., 2021. "Multiplicative random cascade models of multifractal urban structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man, Wang & Nie, Qin & Li, Zongmei & Li, Hui & Wu, Xuewen, 2019. "Using fractals and multifractals to characterize the spatiotemporal pattern of impervious surfaces in a coastal city: Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 44-53.
    2. Chen, Yanguang, 2014. "Urban chaos and replacement dynamics in nature and society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 373-384.
    3. Haosu Zhao & Bart Julien Dewancker & Feng Hua & Junping He & Weijun Gao, 2020. "Restrictions of Historical Tissues on Urban Growth, Self-Sustaining Agglomeration in Walled Cities of Chinese Origin," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    4. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    5. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    6. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    7. Chen, Yanguang, 2020. "Equivalent relation between normalized spatial entropy and fractal dimension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    9. Janka Lengyel & Stéphane Roux & François Sémécurbe & Stéphane Jaffard & Patrice Abry, 2023. "Roughness and intermittency within metropolitan regions - Application in three French conurbations," Environment and Planning B, , vol. 50(3), pages 600-620, March.
    10. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    11. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    12. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    14. Lei Gong & Jianzhu Yang & Chong Wu & Hui Zhou, 2023. "Fractal Characteristics of the Spatial Texture in Traditional Miao Villages in Qiandongnan, Guizhou, China," Sustainability, MDPI, vol. 15(17), pages 1-23, September.
    15. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    16. Chen, Yanguang, 2021. "Exploring the level of urbanization based on Zipf’s scaling exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Dai, Meifeng & Zhang, Cheng & Zhang, Danping, 2014. "Multifractal and singularity analysis of highway volume data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 332-340.
    18. Chumki Shikary & Somnath Rudra, 2024. "Assessment of urban-to-urban interaction and its impact on urban development: a study on a backward district of Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16863-16886, July.
    19. Fernández-Rosales, Iván Yair & Angulo-Brown, Fernando & Pérez-Campuzano, Enrique & Guzmán-Vargas, Lev, 2020. "Distance distributions of human settlements," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    20. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:279-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.