IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v516y2019icp543-551.html
   My bibliography  Save this article

Group transfer entropy with an application to cryptocurrencies

Author

Listed:
  • Dimpfl, Thomas
  • Peter, Franziska J.

Abstract

The detection of informational leadership is a core issue in financial market microstructure. We use effective group transfer entropy (EGTE) as a measure for the predictability of a stochastic process using lagged observations on multiple related processes within the same system. We propose an appropriate bootstrap to derive confidence bounds and show by means of a simulation study that standard linear approaches in economics and finance, such as vector autoregressions and Granger-causality tests, are not well suited to detect information transfer. We empirically examine the markets for cryptocurrencies using intraday data and reveal that the dependencies are mostly of nonlinear nature, highlighting the applicability of EGTE in the context of this new financial product.

Suggested Citation

  • Dimpfl, Thomas & Peter, Franziska J., 2019. "Group transfer entropy with an application to cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 543-551.
  • Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:543-551
    DOI: 10.1016/j.physa.2018.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313967
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grammig, Joachim & Melvin, Michael & Schlag, Christian, 2005. "Internationally cross-listed stock prices during overlapping trading hours: price discovery and exchange rate effects," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 139-164, January.
    2. Fabio Busetti & Andrew Harvey, 2001. "Testing for the Presence of a Random Walk in Series with Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 127-150, March.
    3. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    4. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    5. Putniņš, Tālis J., 2013. "What do price discovery metrics really measure?," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 68-83.
    6. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    7. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    8. Donald Lien & Keshab Shrestha, 2009. "A new information share measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 377-395, April.
    9. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    10. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    11. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    12. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    13. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    14. Oh, Mingi & Kim, Sehyun & Lim, Kyuseong & Kim, Soo Yong, 2018. "Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 233-240.
    15. Grammig, Joachim & Peter, Franziska J., 2013. "Telltale Tails: A New Approach to Estimating Unique Market Information Shares," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 459-488, April.
    16. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    17. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    18. Daugherty, Mary Schmid & Jithendranathan, Thadavillil, 2015. "A study of linkages between frontier markets and the U.S. equity markets using multivariate GARCH and transfer entropy," Journal of Multinational Financial Management, Elsevier, vol. 32, pages 95-115.
    19. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    20. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aktham Maghyereh & Hussein Abdoh, 2022. "Global financial crisis versus COVID‐19: Evidence from sentiment analysis," International Finance, Wiley Blackwell, vol. 25(2), pages 218-248, August.
    2. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    3. Niu, Hongli & Hu, Ziang, 2021. "Information transmission and entropy-based network between Chinese stock market and commodity futures market," Resources Policy, Elsevier, vol. 74(C).
    4. Wang, Lu & Ruan, Hang & Lai, Xiaodong & Li, Dongxin, 2024. "Economic extremes steering renewable energy trajectories: A time-frequency dissection of global shocks," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    5. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    6. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    7. Tong, Zezheng & Goodell, John W. & Shen, Dehua, 2022. "Assessing causal relationships between cryptocurrencies and investor attention: New results from transfer entropy methodology," Finance Research Letters, Elsevier, vol. 50(C).
    8. Park, Sangjin & Jang, Kwahngsoo & Yang, Jae-Suk, 2021. "Information flow between bitcoin and other financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Dora Almeida & Andreia Dionísio & Paulo Ferreira & Isabel Vieira, 2023. "Impact of the COVID-19 Pandemic on Cryptocurrency Markets: A DCCA Analysis," FinTech, MDPI, vol. 2(2), pages 1-17, May.
    10. Maghyereh, Aktham & Abdoh, Hussein & Awartani, Basel, 2022. "Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?," Journal of Commodity Markets, Elsevier, vol. 26(C).
    11. Wang, Lu & Ruan, Hang & Hong, Yanran & Luo, Keyu, 2023. "Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin T. Bohl & Alexander Pütz & Pierre L. Siklos & Christoph Sulewski, 2021. "Information transmission under increasing political tensions—Evidence from the Berlin Produce Exchange 1887–1896," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 226-244, February.
    2. Dirk G. Baur & Thomas Dimpfl, 2019. "Price discovery in bitcoin spot or futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 803-817, July.
    3. Dimpfl, Thomas & Flad, Michael & Jung, Robert C., 2017. "Price discovery in agricultural commodity markets in the presence of futures speculation," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 50-62.
    4. Paolo Pagnottoni & Thomas Dimpfl, 2019. "Price discovery on Bitcoin markets," Digital Finance, Springer, vol. 1(1), pages 139-161, November.
    5. Karsten Schweikert, 2021. "Bootstrap Confidence Intervals and Hypothesis Testing for Market Information Shares [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 934-959.
    6. Carol Alexander & Jaehyuk Choi & Heungju Park & Sungbin Sohn, 2020. "BitMEX bitcoin derivatives: Price discovery, informational efficiency, and hedging effectiveness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(1), pages 23-43, January.
    7. Martin T. Bohl & Alexander Pütz & Pierre L. Siklos & Christoph Sulewski, 2018. "Information Transmission under Increasing Political Tension – Evidence for the Berlin Produce Exchange 1887-1896," CQE Working Papers 7618, Center for Quantitative Economics (CQE), University of Muenster.
    8. Wang, Qiyu & Chong, Terence Tai-Leung, 2021. "Factor pricing of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    9. Piccotti, Louis R. & Schreiber, Ben Z., 2020. "Information shares in a two-tier FX market," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 19-35.
    10. Ke Xu & Yu‐Lun Chen & Bo Liu & Jian Chen, 2024. "Price discovery and long‐memory property: Simulation and empirical evidence from the bitcoin market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 605-618, April.
    11. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    12. Dimpfl, Thomas & Peter, Franziska J., 2021. "Nothing but noise? Price discovery across cryptocurrency exchanges," Journal of Financial Markets, Elsevier, vol. 54(C).
    13. Qadan, Mahmoud, 2018. "Switches in price discovery: Are U.S. traders more qualified in making valuations?," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 221-234.
    14. Arzandeh, Mehdi & Frank, Julieta, 2017. "The Information Content of the Limit Order Book," 7th Annual Canadian Agri-Food Policy Conference, January 11-13, 2017, Ottawa, ON 253251, Canadian Agricultural Economics Society.
    15. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    16. Lien, Donald, 2022. "Comparisons of Alternative Information Share Measures," Finance Research Letters, Elsevier, vol. 50(C).
    17. repec:hum:wpaper:sfb649dp2015-035 is not listed on IDEAS
    18. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    19. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Price delay and market frictions in cryptocurrency markets," Economics Letters, Elsevier, vol. 174(C), pages 39-41.
    20. Surya Chelikani & Frank P. D'Souza, 2014. "The Effect of Regulation Fair Disclosure on Market Integration," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 8(4), pages 43-62.
    21. Bohl, Martin T. & Siklos, Pierre L. & Stefan, Martin & Wellenreuther, Claudia, 2020. "Price discovery in agricultural commodity markets: Do speculators contribute?," Journal of Commodity Markets, Elsevier, vol. 18(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:543-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.