IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp14-21.html
   My bibliography  Save this article

Vulnerability analysis of power grid with the network science approach based on actual grid characteristics: A case study in Iran

Author

Listed:
  • Shahpari, Alireza
  • Khansari, Mohammad
  • Moeini, Ali

Abstract

The vulnerability analysis of power grids has long been of paramount interest to researchers and authorities. Network vulnerability analysis refers to beforehand evaluation of the impact of local failures on the network as a whole so that proper measures could be adopted before occurrence of any major crisis. Previous studies on power grid vulnerabilities that are based on network science concept have been mostly concentrated on topological measures and unweighted networks. In this paper, grid vulnerability identification is carried out by combined use of grid network topology and centrality measures along with real and physical characteristics of power grid. Namely line load and failure rate, with the help of Weighted PageRank algorithm. The main advantage of this approach is that it eliminates complex and time-consuming differential calculations, which results in reduced computation time, and allows real-time updating of the result based on changes in the actual grid characteristics. The proposed model was validated by implementation over a section of Iranian 400 kV and 230 kV power grids. The striking accuracy of the achieved result was confirmed by comparison against results that obtained through calculations by Iran’s national dispatching body.

Suggested Citation

  • Shahpari, Alireza & Khansari, Mohammad & Moeini, Ali, 2019. "Vulnerability analysis of power grid with the network science approach based on actual grid characteristics: A case study in Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 14-21.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:14-21
    DOI: 10.1016/j.physa.2018.08.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309993
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    2. Chassin, David P. & Posse, Christian, 2005. "Evaluating North American electric grid reliability using the Barabási–Albert network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 667-677.
    3. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    4. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    5. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    6. Xu, Yan & Gurfinkel, Aleks Jacob & Rikvold, Per Arne, 2014. "Architecture of the Florida power grid as a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 130-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Dongyue & Hu, Funian & Wang, Shuliang & Chen, Jun, 2021. "Power network robustness analysis based on electrical engineering and complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    2. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    3. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    4. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    5. Xue, Fei & Bompard, Ettore & Huang, Tao & Jiang, Lin & Lu, Shaofeng & Zhu, Huaiying, 2017. "Interrelation of structure and operational states in cascading failure of overloading lines in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 728-740.
    6. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    7. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    8. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    9. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    10. Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    11. Tianlei Zang & Zian Wang & Xiaoguang Wei & Yi Zhou & Jiale Wu & Buxiang Zhou, 2023. "Current Status and Perspective of Vulnerability Assessment of Cyber-Physical Power Systems Based on Complex Network Theory," Energies, MDPI, vol. 16(18), pages 1-38, September.
    12. Bo, Zeng & Shaojie, Ouyang & Jianhua, Zhang & Hui, Shi & Geng, Wu & Ming, Zeng, 2015. "An analysis of previous blackouts in the world: Lessons for China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1151-1163.
    13. Sarah LaRocca & Jonas Johansson & Henrik Hassel & Seth Guikema, 2015. "Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 608-623, April.
    14. Nie, Yan & Zhang, Guoxing & Duan, Hongbo, 2020. "An interconnected panorama of future cross-regional power grid: A complex network approach," Resources Policy, Elsevier, vol. 67(C).
    15. Ettore Bompard & Lingen Luo & Enrico Pons, 2015. "A perspective overview of topological approaches for vulnerability analysis of power transmission grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 15-26.
    16. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    17. Guo, Wenzhang & Wang, Hao & Wu, Zhengping, 2018. "Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 186-199.
    18. Giuliano Andrea Pagani & Marco Aiello, 2015. "A complex network approach for identifying vulnerabilities of the medium and low voltage grid," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 36-61.
    19. Carlo Bianca, 2022. "On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives," Energies, MDPI, vol. 15(21), pages 1-22, October.
    20. Han, Fangyuan & Zio, Enrico, 2019. "A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:14-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.