IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v26y2023i1d10.1007_s11203-022-09272-w.html
   My bibliography  Save this article

Testing the equality of the laws of two strictly stationary processes

Author

Listed:
  • Denys Pommeret

    (ISFA
    Univ Lyon,UCBL, ISFA LSAF EA2429)

  • Laurence Reboul

    (Aix-Marseille University)

  • Anne-francoise Yao

    (Clermont Auvergne University)

Abstract

In this paper we consider the problem of comparison of two strictly stationary processes. The novelty of our approach is that we consider all their d-dimensional joint distributions, for $$d\geqslant 1$$ d ⩾ 1 . Our procedure consists in expanding their densities in a multivariate orthogonal basis and comparing their k first coefficients. The dimension d to consider and the number k of coefficients to compare in view of performing the test can growth with the sample size and are automatically selected by a two-step data-driven procedure. The method works for possibly paired, short or long range dependent processes. A simulation study shows the good behavior of the test procedure. In particular, we apply our method to compare ARFIMA processes. Some real-life applications also illustrate this approach.

Suggested Citation

  • Denys Pommeret & Laurence Reboul & Anne-francoise Yao, 2023. "Testing the equality of the laws of two strictly stationary processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 193-214, April.
  • Handle: RePEc:spr:sistpr:v:26:y:2023:i:1:d:10.1007_s11203-022-09272-w
    DOI: 10.1007/s11203-022-09272-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-022-09272-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-022-09272-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    2. Chang, Chia-Lin & McAleer, Michael, 2015. "Econometric analysis of financial derivatives: An overview," Journal of Econometrics, Elsevier, vol. 187(2), pages 403-407.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. Yongmiao Hong & Xia Wang & Shouyang Wang, 2017. "Testing Strict Stationarity With Applications To Macroeconomic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1227-1277, November.
    5. Paul R. Rosenbaum, 2005. "An exact distribution‐free test comparing two multivariate distributions based on adjacency," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 515-530, September.
    6. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    7. Fabio Busetti & Andrew Harvey, 2010. "Tests of strict stationarity based on quantile indicators," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 435-450, November.
    8. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    9. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    10. Garland Durham & John Geweke & Susan Porter‐Hudak & Fallaw Sowell, 2019. "Bayesian Inference for ARFIMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 388-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Paul Doukhan & Ieva Grublytė & Denys Pommeret & Laurence Reboul, 2020. "Comparing the marginal densities of two strictly stationary linear processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1419-1447, December.
    3. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    4. Palandri, Alessandro, 2024. "Reconciling interest rates evidence with theory: Rejecting unit roots when the HD(1) is a competing alternative," Journal of Banking & Finance, Elsevier, vol. 161(C).
    5. Li, Dong & Tao, Yuxin & Yang, Yaxing & Zhang, Rongmao, 2023. "Maximum likelihood estimation for α-stable double autoregressive models," Journal of Econometrics, Elsevier, vol. 236(1).
    6. Jonas Mockus, 2010. "On simulation of optimal strategies and Nash equilibrium in the financial market context," Journal of Global Optimization, Springer, vol. 48(1), pages 129-143, September.
    7. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    8. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    9. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    10. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    11. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    12. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    13. Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2012. "The Deaton paradox in a long memory context with structural breaks," Applied Economics, Taylor & Francis Journals, vol. 44(25), pages 3309-3322, September.
    14. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    15. Mehmet Dalkir, 2005. "A New Method For Estimating The Order Of Integration Of Fractionally Integrated Processes Using Bispectra," Econometrics 0507001, University Library of Munich, Germany, revised 07 Jul 2005.
    16. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    17. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    18. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    19. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    20. Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2021. "Cycles and Long-Range Behaviour in the European Stock Markets," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 293-302, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:26:y:2023:i:1:d:10.1007_s11203-022-09272-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.