Empirical and modeling studies of WeChat information dissemination
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.08.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huo, Liang'an & Wang, Li & Song, Naixiang & Ma, Chenyang & He, Bing, 2017. "Rumor spreading model considering the activity of spreaders in the homogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 855-865.
- Liu, Liang & Qu, Bo & Chen, Bin & Hanjalic, Alan & Wang, Huijuan, 2018. "Modelling of information diffusion on social networks with applications to WeChat," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 318-329.
- Yang, Dingda & Liao, Xiangwen & Shen, Huawei & Cheng, Xueqi & Chen, Guolong, 2018. "Modeling the reemergence of information diffusion in social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1493-1500.
- Qu, Bo & Wang, Huiijuan, 2017. "SIS epidemic spreading with correlated heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 13-24.
- Si-hua Chen & Wei He, 2014. "Study on Knowledge Propagation in Complex Networks Based on Preferences, Taking Wechat as Example," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-11, July.
- Wu, Qingchu & Zhang, Fei, 2016. "Threshold conditions for SIS epidemic models on edge-weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 77-83.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cui, Yapeng & Ni, Shunjiang & Shen, Shifei & Wang, Zhiru, 2020. "Modeling the dynamics of information dissemination under disaster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
- Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.
- Liu, Xiongding & Li, Tao & Xu, Hao & Liu, Wenjin, 2019. "Spreading dynamics of an online social information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 497-510.
- Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
- Zhang, Jing & Wang, Xiaoli & Xie, Yanxi & Wang, Meihua, 2022. "Research on multi-topic network public opinion propagation model with time delay in emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Wan, Chen & Li, Tao & Zhang, Wu & Dong, Jing, 2018. "Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 17-28.
- Liu, Fangzhou & Zhang, Zengjie & Buss, Martin, 2019. "Robust optimal control of deterministic information epidemics with noisy transition rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 577-587.
- Jia, Peng & Liu, Jiayong & Fang, Yong & Liu, Liang & Liu, Luping, 2018. "Modeling and analyzing malware propagation in social networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 240-254.
- Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
- Shan Yang & Kaijun Su & Bing Wang & Zitong Xu, 2022. "A Coupled Mathematical Model of the Dissemination Route of Short-Term Fund-Raising Fraud," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
- Huo, Liang’an & Wang, Li & Zhao, Xiaomin, 2019. "Stability analysis and optimal control of a rumor spreading model with media report," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 551-562.
- Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
- Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
- Zhang, Yuhuai & Zhu, Jianjun, 2018. "Stability analysis of I2S2R rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 862-881.
- Yufang Fu & Bin Cao & Wei Zhang & Zongwei Luo, 2022. "Information Spreading Considering Repeated Judgment with Non-Recursion," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
- Li, Jiarong & Jiang, Haijun & Yu, Zhiyong & Hu, Cheng, 2019. "Dynamical analysis of rumor spreading model in homogeneous complex networks," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 374-385.
- Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Chen, Jian & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2020. "Cost-effective anti-rumor message-pushing schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Chołoniewski, Jan & Sienkiewicz, Julian & Leban, Gregor & Hołyst, Janusz A., 2019. "Modeling of temporal fluctuation scaling in online news network with independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 129-144.
More about this item
Keywords
WeChat; WeChat public account; Information dissemination;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1113-1120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.