IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp129-144.html
   My bibliography  Save this article

Modeling of temporal fluctuation scaling in online news network with independent cascade model

Author

Listed:
  • Chołoniewski, Jan
  • Sienkiewicz, Julian
  • Leban, Gregor
  • Hołyst, Janusz A.

Abstract

We show that activity of online news outlets follows a temporal fluctuation scaling law and we recover this feature using an independent cascade model augmented with a varying hype parameter representing a viral potential of an original article. We use the Event Registry platform to track activity of over 10,000 news outlets in 11 different topics in the course of the year 2016. Analyzing over 22,000,000 articles, we found that fluctuation scaling exponents α depend on time window size Δ in a characteristic way for all the considered topics — news outlets activities are partially synchronized for Δ>15min with a cross-over for Δ=1day. The proposed model was run on several synthetic network models as well as on a network extracted from the real data. Our approach discards timestamps as not fully reliable observables and focuses on co-occurrences of publishers in cascades of similarly phrased news items. We make use of the Event Registry news clustering feature to find correlations between content published by news outlets in order to uncover common information propagation paths in published articles and to estimate weights of edges in the independent cascade model. While the independent cascade model follows the fluctuation scaling law with a trivial exponent α=0.5, we argue that besides the topology of the underlying cooperation network a temporal clustering of articles with similar hypes is necessary to qualitatively reproduce the fluctuation scaling observed in the data.

Suggested Citation

  • Chołoniewski, Jan & Sienkiewicz, Julian & Leban, Gregor & Hołyst, Janusz A., 2019. "Modeling of temporal fluctuation scaling in online news network with independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 129-144.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:129-144
    DOI: 10.1016/j.physa.2019.02.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301888
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.02.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Xi & Li, Yuanyuan & Qiao, Shaojie & Han, Nan & Wu, Yue & Peng, Jing & Li, Binyong, 2018. "An emotional contagion model for heterogeneous social media with multiple behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 185-202.
    2. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    3. Anna Chmiel & Julian Sienkiewicz & Mike Thelwall & Georgios Paltoglou & Kevan Buckley & Arvid Kappas & Janusz A Hołyst, 2011. "Collective Emotions Online and Their Influence on Community Life," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
    4. Liu, Nairong & An, Haizhong & Gao, Xiangyun & Li, Huajiao & Hao, Xiaoqing, 2016. "Breaking news dissemination in the media via propagation behavior based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 44-54.
    5. Yang, Dingda & Liao, Xiangwen & Shen, Huawei & Cheng, Xueqi & Chen, Guolong, 2018. "Modeling the reemergence of information diffusion in social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1493-1500.
    6. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    7. Mitrović, Marija & Tadić, Bosiljka, 2012. "Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5264-5278.
    8. Julian Sienkiewicz & Marcin Skowron & Georgios Paltoglou & Janusz A. Hołyst, 2013. "Entropy-Growth-Based Model Of Emotionally Charged Online Dialogues," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-25.
    9. Chmiel, Anna M. & Sienkiewicz, Julian & Suchecki, Krzysztof & Hołyst, Janusz A., 2007. "Networks of companies and branches in Poland," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 134-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalin, Andrey A. & Postnikov, Eugene B., 2020. "A wavelet-based approach to revealing the Tweedie distribution type in sparse data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    2. Ma, Yinghong & Song, Le & Ji, Zhaoxun & Wang, Qian & Yu, Qinglin, 2020. "Scholar’s career switch adhesive with research topics: An evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    2. Chołoniewski, Jan & Chmiel, Anna & Sienkiewicz, Julian & Hołyst, Janusz A. & Küster, Dennis & Kappas, Arvid, 2016. "Temporal Taylor’s scaling of facial electromyography and electrodermal activity in the course of emotional stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 91-100.
    3. Damien Challet & Nikita Gourianov, 2018. "Dynamical regularities of US equities opening and closing auctions," Post-Print hal-01702726, HAL.
    4. Montebruno, Piero & Bennett, Robert J. & van Lieshout, Carry & Smith, Harry, 2019. "A tale of two tails: Do Power Law and Lognormal models fit firm-size distributions in the mid-Victorian era?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 858-875.
    5. Rashidisabet, Homa & Ajilore, Olusola & Leow, Alex & Demos, Alexander P., 2022. "Revisiting power-law estimation with applications to real-world human typing dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    6. Yekaterina S Pavlova & David Paez-Espino & Andrew Yu Morozov & Ilya S Belalov, 2021. "Searching for fat tails in CRISPR-Cas systems: Data analysis and mathematical modeling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.
    7. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    8. Banshal, Sumit Kumar & Gupta, Solanki & Lathabai, Hiran H & Singh, Vivek Kumar, 2022. "Power Laws in altmetrics: An empirical analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Shim, Jaehu, 2016. "Toward a more nuanced understanding of long-tail distributions and their generative process in entrepreneurship," Journal of Business Venturing Insights, Elsevier, vol. 6(C), pages 21-27.
    10. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    11. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    12. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    13. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    14. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    15. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    16. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    17. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    18. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    19. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    20. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:129-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.