IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v453y2016icp77-83.html
   My bibliography  Save this article

Threshold conditions for SIS epidemic models on edge-weighted networks

Author

Listed:
  • Wu, Qingchu
  • Zhang, Fei

Abstract

We consider the disease dynamics of a susceptible–infected–susceptible model in weighted random and regular networks. By using the pairwise approximation, we build an edge-based compartment model, from which the condition of epidemic outbreak is obtained. Our results suggest that there exists a remarkable difference between the linear and nonlinear transmission rate. For a linear transmission rate, the epidemic threshold is completely determined by the mean weight, which is different from the susceptible–infected–recovered model framework. While for a nonlinear transmission rate, the epidemic threshold is not only related to the mean weight, but also closely related to the heterogeneity of weight distribution.

Suggested Citation

  • Wu, Qingchu & Zhang, Fei, 2016. "Threshold conditions for SIS epidemic models on edge-weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 77-83.
  • Handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:77-83
    DOI: 10.1016/j.physa.2016.02.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116002028
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qingchu & Fu, Xinchu, 2016. "Immunization and epidemic threshold of an SIS model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 576-581.
    2. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    3. Barthélemy, Marc & Barrat, Alain & Pastor-Satorras, Romualdo & Vespignani, Alessandro, 2005. "Characterization and modeling of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jinghong & Du, Zhitao & Guo, Jianchao & Fu, Xiangling & Zhang, Yuqiang & Wu, Ye, 2018. "Empirical and modeling studies of WeChat information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1113-1120.
    2. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    3. Jing, Wenjun & Li, Yi & Zhang, Xiaoqin & Zhang, Juping & Jin, Zhen, 2022. "A rumor spreading pairwise model on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    4. Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Peng & Liu, Jiayong & Fang, Yong & Liu, Liang & Liu, Luping, 2018. "Modeling and analyzing malware propagation in social networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 240-254.
    2. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    3. Linda Margarita Medina Herrera & José Benito Díaz Hernández, 2011. "Caracterización y modelado de redes: el caso de la Bolsa Mexicana de Valores," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 23-32.
    4. Arribas Ivan & Perez Francisco & Tortosa-Ausina Emili, 2010. "The Determinants of International Financial Integration Revisited: The Role of Networks and Geographic Neutrality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-55, December.
    5. Andrea Fracasso & Nicola Grassano & Giuseppe Vittucci Marzetti, 2015. "The Gravity of Foreign News Coverage in the EU: Does the Euro Matter?," Journal of Common Market Studies, Wiley Blackwell, vol. 53(2), pages 274-291, March.
    6. Peixin Dong & Dongyuan Li & Jianping Xing & Haohui Duan & Yong Wu, 2019. "A Method of Bus Network Optimization Based on Complex Network and Beidou Vehicle Location," Future Internet, MDPI, vol. 11(4), pages 1-12, April.
    7. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2010. "The evolution of the world trade web: a weighted-network analysis," Journal of Evolutionary Economics, Springer, vol. 20(4), pages 479-514, August.
    8. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    9. Fan, Chong-jun & Jin, Yang & Huo, Liang-an & Liu, Chen & Yang, Yun-peng & Wang, Ya-qiong, 2016. "Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 523-530.
    10. Brandon Lieberthal & Allison M Gardner, 2021. "Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
    11. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2007. "The Evolution of the World Trade Web," LEM Papers Series 2007/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. Franco, Chiara & Montresor, Sandro & Vittucci Marzetti, Giuseppe, 2011. "On indirect trade-related R&D spillovers: The "Average Propagation Length" of foreign R&D," Structural Change and Economic Dynamics, Elsevier, vol. 22(3), pages 227-237, September.
    13. Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
    14. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    15. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    16. Long, Linbo & Zhong, Kan & Wang, Wei, 2018. "Malicious viruses spreading on complex networks with heterogeneous recovery rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 746-753.
    17. Matt J Keeling & Thomas House & Alison J Cooper & Lorenzo Pellis, 2016. "Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-18, December.
    18. Shen, Ai-Zhong & Guo, Jin-Li & Suo, Qi, 2017. "Study of the variable growth hypernetworks influence on the scaling law," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 84-89.
    19. Daniela Silvia Pace & Marina Pulcini & Francesca Triossi, 2012. "Anthropogenic food patches and association patterns of Tursiops truncatus at Lampedusa island, Italy," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(2), pages 254-264.
    20. Li, Yinwei & Jiang, Guo-Ping & Wu, Meng & Song, Yu-Rong & Wang, Haiyan, 2021. "Undirected Congruence Model: Topological characteristics and epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:77-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.