IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v472y2017icp13-24.html
   My bibliography  Save this article

SIS epidemic spreading with correlated heterogeneous infection rates

Author

Listed:
  • Qu, Bo
  • Wang, Huiijuan

Abstract

The epidemic spreading has been widely studied in homogeneous cases, where each node may get infected by an infected neighbor with the same rate. However, the infection rate between a pair of nodes, which may depend on e.g. their interaction frequency, is usually heterogeneous and even correlated with their nodal degrees in the contact network. In this paper, we aim to understand how such correlated heterogeneous infection rates influence the epidemic spreading on different network topologies. Motivated by real-world datasets, we propose a Correlated heterogeneous Susceptible–Infected–Susceptible (CSIS) model which assumes that the infection rate βij(=βji) between node i and j is correlated with the degree of the two end nodes: βij=c(didj)α, where α indicates the strength of the correlation between the infection rates and nodal degrees, and c is selected so that the average infection rate is 1 in this work. The recovery rate is the same for all the nodes. In order to understand the effect of such correlation on epidemic spreading, we consider as well the corresponding uncorrected but still heterogeneous infection rate scenario as a reference, where the original correlated infection rates in our CSIS model are shuffled and reallocated to the links of the same network topology. We compare these two scenarios in the average fraction of infected nodes in the metastable state on Erdös–Rényi (ER) and scale-free (SF) networks with a similar average degree. Through the continuous-time simulations, we find that, when the recovery rate is small, the negative correlation is more likely to help the epidemic spread and the positive correlation prohibits the spreading; as the recovery rate increases to be larger than a critical value, the positive but not negative correlation tends to help the spreading. Our findings are further analytically proved in a wheel network (one central node connects with each of the nodes in a ring) and validated on real-world networks with correlated heterogeneous interaction frequencies.

Suggested Citation

  • Qu, Bo & Wang, Huiijuan, 2017. "SIS epidemic spreading with correlated heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 13-24.
  • Handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:13-24
    DOI: 10.1016/j.physa.2016.12.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116310573
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.12.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jinghong & Du, Zhitao & Guo, Jianchao & Fu, Xiangling & Zhang, Yuqiang & Wu, Ye, 2018. "Empirical and modeling studies of WeChat information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1113-1120.
    2. Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    3. Jia, Peng & Liu, Jiayong & Fang, Yong & Liu, Liang & Liu, Luping, 2018. "Modeling and analyzing malware propagation in social networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 240-254.
    4. Wan, Chen & Li, Tao & Zhang, Wu & Dong, Jing, 2018. "Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 17-28.
    5. Rajeev Kumar Shakya & Tadesse Hailu Ayane & Feyissa Debo Diba & Pushpa Mamoria, 2022. "SEIRS model with spatial correlation for analyzing dynamic of virus spreading in event-driven wireless sensor networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 752-760, April.
    6. Liu, Fangzhou & Zhang, Zengjie & Buss, Martin, 2019. "Robust optimal control of deterministic information epidemics with noisy transition rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 577-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:13-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.