Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
- Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
- Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013.
"A link based network route choice model with unrestricted choice set,"
Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
- Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," MPRA Paper 48707, University Library of Munich, Germany.
- Fosgerau, Mogens & Frejinger, Emma & Karlström, Anders, 2013. "A link based network route choice model with unrestricted choice set," Working papers in Transport Economics 2013:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
- Danalet, Antonin & Tinguely, Loïc & Lapparent, Matthieu de & Bierlaire, Michel, 2016. "Location choice with longitudinal WiFi data," Journal of choice modelling, Elsevier, vol. 18(C), pages 1-17.
- Sarjala, Satu, 2019. "Built environment determinants of pedestrians’ and bicyclists’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route," Journal of Transport Geography, Elsevier, vol. 78(C), pages 56-69.
- Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
- Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
- Caleb Van Nostrand & Vijayaraghavan Sivaraman & Abdul Pinjari, 2013. "Analysis of long-distance vacation travel demand in the United States: a multiple discrete–continuous choice framework," Transportation, Springer, vol. 40(1), pages 151-171, January.
- Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
- Yamamoto, Kazuhiro & Kokubo, Satoshi & Nishinari, Katsuhiro, 2007. "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 654-660.
- Matthew Carmona, 2019. "Place value: place quality and its impact on health, social, economic and environmental outcomes," Journal of Urban Design, Taylor & Francis Journals, vol. 24(1), pages 1-48, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
- Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
- Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Mohammed Mahmod Shuaib, 2016. "Modeling the Pedestrian Ability of Detecting Lanes and Lane Changing Behavior," Modern Applied Science, Canadian Center of Science and Education, vol. 10(7), pages 1-1, July.
- Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
- Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
- Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
- Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
- Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
- Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
- Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 0. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 0, pages 1-41.
- Nicholas Molyneaux & Riccardo Scarinci & Michel Bierlaire, 2021. "Design and analysis of control strategies for pedestrian flows," Transportation, Springer, vol. 48(4), pages 1767-1807, August.
- Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
- Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
- Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
- Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
- Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Jian, Li & Lizhong, Yang & Daoliang, Zhao, 2005. "Simulation of bi-direction pedestrian movement in corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 619-628.
- Heng Wang & Zehao Jiang & Tiandong Xu & Feng Li, 2021. "A Quantitative Approach of Subway Station Passengers’ Heterogeneity of Decision Preference Considering Personality Traits during Emergency Evacuation," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
More about this item
Keywords
pedestrian behavior model; activity scheduling; Global Positioning System; grid-based spatial representation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4871-:d:543964. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.