IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp248-253.html
   My bibliography  Save this article

The mutual information based minimum spanning tree to detect and evaluate dependencies between aero-engine gas path system variables

Author

Listed:
  • Dong, Keqiang
  • Long, Linan
  • Zhang, Hong
  • Gao, You

Abstract

There is a great interest in studying statistical dependence characteristics of aero-engine gas path system time series. The mutual information is effective, mainly in quantifying the dependency of time series. By applying the mutual information and average mutual information method to aero-engine gas path system, the statistical dependence between two data steams from a finite number of samples are established. To better understand dependency of gas path system time series, we define the mutual information distance and propose the mutual information based minimum spanning tree to investigate the performance parameters and their interaction of gas path system. By examining the minimum spanning tree, we find that the exhaust gas temperature (EGT) and the low-spool rotor speed (N1) are confirmed as the predominant variables in fourteen gas path parameters. The results show that the proposed method is effective to detect the statistical dependence of gas path system parameters and has more valuable information.

Suggested Citation

  • Dong, Keqiang & Long, Linan & Zhang, Hong & Gao, You, 2018. "The mutual information based minimum spanning tree to detect and evaluate dependencies between aero-engine gas path system variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 248-253.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:248-253
    DOI: 10.1016/j.physa.2018.04.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304801
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Keqiang & Zhang, Hong & Gao, You, 2017. "Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 363-369.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Shohag Barman & Yung-Keun Kwon, 2017. "A novel mutual information-based Boolean network inference method from time-series gene expression data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
    4. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing, 2017. "Transfer mutual information: A new method for measuring information transfer to the interactions of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 517-526.
    5. Leo Egghe & Loet Leydesdorff, 2009. "The relation between Pearson's correlation coefficient r and Salton's cosine measure," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(5), pages 1027-1036, May.
    6. Marinai, Luca & Probert, Douglas & Singh, Riti, 2004. "Prospects for aero gas-turbine diagnostics: a review," Applied Energy, Elsevier, vol. 79(1), pages 109-126, September.
    7. Dionisio, Andreia & Menezes, Rui & Mendes, Diana A., 2004. "Mutual information: a measure of dependency for nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 326-329.
    8. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    9. Teng, Yue & Shang, Pengjian, 2017. "Transfer entropy coefficient: Quantifying level of information flow between financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 60-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Q. Barbi & G. A. Prataviera, 2017. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Papers 1711.06185, arXiv.org, revised May 2019.
    2. Barbi, A.Q. & Prataviera, G.A., 2019. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 876-885.
    3. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    4. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    5. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    6. Dimitar Kitanovski & Igor Mishkovski & Viktor Stojkoski & Miroslav Mirchev, 2024. "Network-based diversification of stock and cryptocurrency portfolios," Papers 2408.11739, arXiv.org.
    7. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    8. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    9. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    10. Weibo Li & Wei Liu & Lei Wu & Xue Guo, 2021. "Risk spillover networks in financial system based on information theory," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    11. Zhong, Tao & Peng, Qinke & Wang, Xiao & Zhang, Jing, 2016. "Novel indexes based on network structure to indicate financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 583-594.
    12. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    13. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    14. Gao, Hai-Ling & Mei, Dong-Cheng, 2019. "The correlation structure in the international stock markets during global financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Jonathan E. Ogbuabor & Anthony Orji & Gladys C. Aneke & Oyun Erdene-Urnukh, 2016. "Measuring the Real and Financial Connectedness of Selected African Economies with the Global Economy," South African Journal of Economics, Economic Society of South Africa, vol. 84(3), pages 364-399, September.
    16. Zeng, Zhi-Jian & Xie, Chi & Yan, Xin-Guo & Hu, Jue & Mao, Zhou, 2016. "Are stock market networks non-fractal? Evidence from New York Stock Exchange," Finance Research Letters, Elsevier, vol. 17(C), pages 97-102.
    17. Peng Yue & Yaodong Fan & Jonathan A. Batten & Wei-Xing Zhou, 2020. "Information transfer between stock market sectors: A comparison between the USA and China," Papers 2004.07612, arXiv.org.
    18. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    19. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    20. Choi, Insu & Kim, Woo Chang, 2023. "Estimating Historical Downside Risks of Global Financial Market Indices via Inflation Rate-Adjusted Dependence Graphs," Research in International Business and Finance, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:248-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.