IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp583-594.html
   My bibliography  Save this article

Novel indexes based on network structure to indicate financial market

Author

Listed:
  • Zhong, Tao
  • Peng, Qinke
  • Wang, Xiao
  • Zhang, Jing

Abstract

There have been various achievements to understand and to analyze the financial market by complex network model. However, current studies analyze the financial network model but seldom present quantified indexes to indicate or forecast the price action of market. In this paper, the stock market is modeled as a dynamic network, in which the vertices refer to listed companies and edges refer to their rank-based correlation based on price series. Characteristics of the network are analyzed and then novel indexes are introduced into market analysis, which are calculated from maximum and fully-connected subnets. The indexes are compared with existing ones and the results confirm that our indexes perform better to indicate the daily trend of market composite index in advance. Via investment simulation, the performance of our indexes is analyzed in detail. The results indicate that the dynamic complex network model could not only serve as a structural description of the financial market, but also work to predict the market and guide investment by indexes.

Suggested Citation

  • Zhong, Tao & Peng, Qinke & Wang, Xiao & Zhang, Jing, 2016. "Novel indexes based on network structure to indicate financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 583-594.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:583-594
    DOI: 10.1016/j.physa.2015.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008547
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & N. Mantegna, Rosario, 2003. "Degree stability of a minimum spanning tree of price return and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 66-73.
    3. Gao, Bo & Ren, Ruo-en, 2013. "The topology of a causal network for the Chinese financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2965-2976.
    4. Janghyuk Youn & Junghoon Lee & Woojin Chang, 2011. "Stock Market Differences In Correlation-Based Weighted Network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1227-1245.
    5. Lim, Kyuseong & Kim, Min Jae & Kim, Sehyun & Kim, Soo Yong, 2014. "Statistical properties of the stock and credit market: RMT and network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 66-75.
    6. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    7. Yang, Chunxia & Chen, Yanhua & Niu, Lei & Li, Qian, 2014. "Cointegration analysis and influence rank—A network approach to global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 168-185.
    8. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    9. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang, 2009. "A network analysis of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2956-2964.
    10. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    11. Jean-Philippe Bouchaud, 2010. "The endogenous dynamics of markets: price impact and feedback loops," Papers 1009.2928, arXiv.org.
    12. Tu, Chengyi, 2014. "Cointegration-based financial networks study in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 245-254.
    13. Frank Emmert-Streib & Matthias Dehmer, 2010. "Influence of the Time Scale on the Construction of Financial Networks," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Cheng & Sun, Qian & Ye, Tanglin & Wang, Qingyun, 2023. "Identification of systemically important financial institutions in a multiplex financial network: A multi-attribute decision-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Chen, Wei & Qu, Shuai & Jiang, Manrui & Jiang, Cheng, 2021. "The construction of multilayer stock network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Akgüller, Ömer & Balcı, Mehmet Ali, 2018. "Geodetic convex boundary curvatures of the communities in stock market networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 569-581.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    3. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    4. Tian, Hu & Zheng, Xiaolong & Zeng, Daniel Danjun, 2019. "Analyzing the dynamic sectoral influence in Chinese and American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    6. Wen, Danyan & Ma, Chaoqun & Wang, Gang-Jin & Wang, Senzhang, 2018. "Investigating the features of pairs trading strategy: A network perspective on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 903-918.
    7. Xiurong Chen & Aimin Hao & Yali Li, 2020. "The impact of financial contagion on real economy-An empirical research based on combination of complex network technology and spatial econometrics model," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    8. Lahmiri, Salim, 2017. "Cointegration and causal linkages in fertilizer markets across different regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 181-189.
    9. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    10. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A. & Pardalos, P.M. & Zamaraev, V.A., 2014. "Measures of uncertainty in market network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 59-70.
    11. A. Q. Barbi & G. A. Prataviera, 2017. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Papers 1711.06185, arXiv.org, revised May 2019.
    12. Shi, Huai-Long & Chen, Huayi, 2023. "Revisiting asset co-movement: Does network topology really matter?," Research in International Business and Finance, Elsevier, vol. 66(C).
    13. khoojine, Arash Sioofy & Han, Dong, 2019. "Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1091-1109.
    14. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    15. Haifei Liu & Tingqiang Chen & Zuhan Hu, 2017. "Dynamic Evolution of Securities Market Network Structure under Acute Fluctuation Circumstances," Complexity, Hindawi, vol. 2017, pages 1-11, November.
    16. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).
    17. Barbi, A.Q. & Prataviera, G.A., 2019. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 876-885.
    18. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    19. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    20. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:583-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.