IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0171097.html
   My bibliography  Save this article

A novel mutual information-based Boolean network inference method from time-series gene expression data

Author

Listed:
  • Shohag Barman
  • Yung-Keun Kwon

Abstract

Background: Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately. Results: In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI) method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods. Conclusions: Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

Suggested Citation

  • Shohag Barman & Yung-Keun Kwon, 2017. "A novel mutual information-based Boolean network inference method from time-series gene expression data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
  • Handle: RePEc:plo:pone00:0171097
    DOI: 10.1371/journal.pone.0171097
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171097
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171097&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0171097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengtong Han & Raymond K W Wong & Thomas C M Lee & Linghao Shen & Shuo-Yen R Li & Xiaodan Fan, 2014. "A Full Bayesian Approach for Boolean Genetic Network Inference," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo de Anda-Jáuregui & Jesús Espinal-Enríquez & Santiago Sandoval-Motta & Enrique Hernández-Lemus, 2019. "A Boolean Network Approach to Estrogen Transcriptional Regulation," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    2. Dong, Keqiang & Long, Linan & Zhang, Hong & Gao, You, 2018. "The mutual information based minimum spanning tree to detect and evaluate dependencies between aero-engine gas path system variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 248-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongmei & Huang, Xianzheng & Han, Shengtong & Rezwan, Faisal I. & Karmaus, Wilfried & Arshad, Hasan & Holloway, John W., 2021. "Gaussian Bayesian network comparisons with graph ordering unknown," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.