IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252601.html
   My bibliography  Save this article

Risk spillover networks in financial system based on information theory

Author

Listed:
  • Weibo Li
  • Wei Liu
  • Lei Wu
  • Xue Guo

Abstract

Since the financial system has illustrated an increasingly prominent characteristic of inextricable connections, information theory is gradually utilized to study the financial system. By collecting the daily data of industry index (2005-2020) and region index (2012-2020) listed in China as samples, this paper applies an innovative measure named partial mutual information on mixed embedding to generate directed networks. Based on the analysis of nonlinear relationships among sectors, this paper realizes the accurate construction of “time-varying” financial network from the perspective of risk spillover. The results are presented as follow: (1) interactions can be better understood through the nonlinear networks among distinct sectors, and sectors in the networks could be classified into different types according to their topological properties connected to risk spillover; (2) in the rising stage, information is transmitted rapidly in the network, so the risk is fast diffused and absorbed; (3) in the declining stage, the network topology is more complex and panic sentiments have long term impact leading to more connections; (4) The US market, Japan market and Hongkong market have significant affect on China’s market. The results suggest that this nonlinear measure is an effective approach to develop financial networks and explore the mechanism of risk spillover.

Suggested Citation

  • Weibo Li & Wei Liu & Lei Wu & Xue Guo, 2021. "Risk spillover networks in financial system based on information theory," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0252601
    DOI: 10.1371/journal.pone.0252601
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252601
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252601&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yao, Can-Zhong & Lin, Qing-Wen & Lin, Ji-Nan, 2016. "A study of industrial electricity consumption based on partial Granger causality network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 629-646.
    2. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2017. "Microeconomic Origins of Macroeconomic Tail Risks," American Economic Review, American Economic Association, vol. 107(1), pages 54-108, January.
    3. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    6. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    7. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2016. "Detecting Causality in Non-stationary Time Series Using Partial Symbolic Transfer Entropy: Evidence in Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 341-365, March.
    8. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    9. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    10. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    11. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    12. Alter, Adrian & Beyer, Andreas, 2014. "The dynamics of spillover effects during the European sovereign debt turmoil," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 134-153.
    13. Zheng, Zeyu & Gui, Jun & Qiao, Zhi & Fu, Yang & Stanley, H.Eugene & Li, Baowen, 2019. "New dynamics between volume and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1343-1350.
    14. Pawe{l} Fiedor, 2014. "Mutual Information Rate-Based Networks in Financial Markets," Papers 1401.2548, arXiv.org.
    15. Catherine Kyrtsou & Dimitris Kugiumtzis & Angeliki Papana, 2019. "Further insights on the relationship between SP500, VIX and volume: a new asymmetric causality test," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1402-1419, October.
    16. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    17. Zihui Yang & Yinggang Zhou, 2017. "Quantitative Easing and Volatility Spillovers Across Countries and Asset Classes," Management Science, INFORMS, vol. 63(2), pages 333-354, February.
    18. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    19. Jenna Birch & Athanasios A. Pantelous & Kimmo Soramäki, 2016. "Analysis of Correlation Based Networks Representing DAX 30 Stock Price Returns," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 501-525, April.
    20. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    21. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    22. Yao, Can-Zhong & Lin, Ji-Nan & Lin, Qing-Wen & Zheng, Xu-Zhou & Liu, Xiao-Feng, 2016. "A study of causality structure and dynamics in industrial electricity consumption based on Granger network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 297-320.
    23. Go Tamakoshi & Shigeyuki Hamori, 2013. "An asymmetric dynamic conditional correlation analysis of linkages of European financial institutions during the Greek sovereign debt crisis," The European Journal of Finance, Taylor & Francis Journals, vol. 19(10), pages 939-950, November.
    24. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    25. Charu Sharma & Amber Habib, 2019. "Mutual information based stock networks and portfolio selection for intraday traders using high frequency data: An Indian market case study," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    26. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Shi, Huai-Long & Chen, Huayi, 2023. "Revisiting asset co-movement: Does network topology really matter?," Research in International Business and Finance, Elsevier, vol. 66(C).
    4. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    5. Guo, Xue & Li, Weibo & Zhang, Hu & Tian, Tianhai, 2022. "Multi-likelihood methods for developing relationship networks using stock market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    7. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    9. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    10. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    11. Kumar, Sudarshan & Bansal, Avijit & Chakrabarti, Anindya S., 2019. "Ripples on financial networks," IIMA Working Papers WP 2019-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    13. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    14. Yong Kheng Goh & Haslifah M Hasim & Chris G Antonopoulos, 2018. "Inference of financial networks using the normalised mutual information rate," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    15. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    16. Fang, Ming & Taylor, Stephen & Uddin, Ajim, 2022. "The network structure of overnight index swap rates," Finance Research Letters, Elsevier, vol. 46(PB).
    17. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    18. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    19. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    20. Zihui Yang & Yinggang Zhou & Xin Cheng, 2020. "Systemic risk in global volatility spillover networks: Evidence from option‐implied volatility indices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 392-409, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.