The Effects of Imitation Dynamics on Vaccination Behaviours in SIR-Network Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Badham, Jennifer & Stocker, Rob, 2010. "The impact of network clustering and assortativity on epidemic behaviour," Theoretical Population Biology, Elsevier, vol. 77(1), pages 71-75.
- Zhang, Haifeng & Fu, Feng & Zhang, Wenyao & Wang, Binghong, 2012. "Rational behavior is a ‘double-edged sword’ when considering voluntary vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4807-4815.
- Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
- Julien Arino & P. van den Driessche, 2003. "A multi-city epidemic model," Mathematical Population Studies, Taylor & Francis Journals, vol. 10(3), pages 175-193.
- M. Piraveenan & M. Prokopenko & A. Y. Zomaya, 2009. "Assortativeness and information in scale-free networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 291-300, February.
- Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
- Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
- Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Huang, He & Xu, Yang & Xing, Jingli & Shi, Tianyu, 2023. "Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Kumar, Viney & Bhattacharyya, Samit, 2023. "Nonlinear effect of sentiments and opinion sharing on vaccination decision in face of an outbreak: A multiplex network approach," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ichinose, Genki & Kurisaku, Takehiro, 2017. "Positive and negative effects of social impact on evolutionary vaccination game in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 84-90.
- Ding, Hong & Xu, Jia-Hao & Wang, Zhen & Ren, Yi-Zhi & Cui, Guang-Hai, 2018. "Subsidy strategy based on history information can stimulate voluntary vaccination behaviors on seasonal diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 390-399.
- Chang, Sheryl L. & Piraveenan, Mahendra & Prokopenko, Mikhail, 2020. "Impact of network assortativity on epidemic and vaccination behaviour," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
- Kejriwal, Saransh & Sheth, Sarjan & Silpa, P.S. & Sarkar, Sumit & Guha, Apratim, 2022. "Attaining herd immunity to a new infectious disease through multi-stage policies incentivising voluntary vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
- Verelst, Frederik & Willem, Lander & Kessels, Roselinde & Beutels, Philippe, 2018. "Individual decisions to vaccinate one's child or oneself: A discrete choice experiment rejecting free-riding motives," Social Science & Medicine, Elsevier, vol. 207(C), pages 106-116.
- Cai, Chao-Ran & Wu, Zhi-Xi & Guan, Jian-Yue, 2014. "Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 36-43.
- Li, Dandan & Ma, Jing & Tian, Zihao & Zhu, Hengmin, 2015. "An evolutionary game for the diffusion of rumor in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 51-58.
- Alam, Muntasir & Kuga, Kazuki & Tanimoto, Jun, 2019. "Three-strategy and four-strategy model of vaccination game introducing an intermediate protecting measure," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 408-422.
- Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
- Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
- Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
- Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021.
"Optimal Lockdown in a Commuting Network,"
American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
- Pablo Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," NBER Working Papers 27441, National Bureau of Economic Research, Inc.
- Fajgelbaum, Pablo D. & Khandelwal, Amit & Kim, Wookun & Khandelwal, Cristiano & Schaal, Edouard, 2020. "Optimal Lockdown in a Commuting Network," 2020: Economic Implications of COVID-19, December 14-15, Virtual Platform 339364, International Agricultural Trade Research Consortium.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal lockdown in a commuting network," Economics Working Papers 1727, Department of Economics and Business, Universitat Pompeu Fabra.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Working Papers 2020-36, Princeton University. Economics Department..
- Pablo Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Departmental Working Papers 2010, Southern Methodist University, Department of Economics.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Working Papers 1187, Barcelona School of Economics.
- Schaal, Edouard & Fajgelbaum, Pablo & Khandelwal, Amit & Kim, Wookun & Mantovani, Cristiano, 2020. "Optimal Lockdown in a Commuting Network," CEPR Discussion Papers 14923, C.E.P.R. Discussion Papers.
- Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
- Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
- Yanling Zhang & Feng Fu, 2018. "Strategy intervention for the evolution of fairness," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
- Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
More about this item
Keywords
vaccination; epidemic modelling; SIR model; strategy imitation; herd immunity; Erdös-Rényi random networks; greater Sydney commuting network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2477-:d:247605. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.