IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v433y2015icp51-58.html
   My bibliography  Save this article

An evolutionary game for the diffusion of rumor in complex networks

Author

Listed:
  • Li, Dandan
  • Ma, Jing
  • Tian, Zihao
  • Zhu, Hengmin

Abstract

In this paper, we investigate the rumor diffusion process according to the evolutionary game framework. By using three real social network datasets, we find that increasing the judgment ability of individuals could curb the diffusion of rumor effectively. Under the same level of punishment cost, there are more spreaders in the network that has larger average degree. Moreover, the punishment fraction has more significant impact than the risk coefficient on the controlling of rumor diffusion. There exist some optimal risk coefficients and punishment fractions that could help more people refusing to spread rumor. In addition, the effect of the tie strength on the final fraction of spreaders is investigated. The results indicate that the rumor can be suppressed soon if the individuals preferentially select the neighbor either weaker or stronger ties persistently to update their strategy. However, choosing neighbor blindly may promote the spread of rumor. Finally, by comparing three kinds of punishment mechanisms, we show that taking the lead in punishing the higher degree nodes is the most effective measure to reduce the coverage of rumor.

Suggested Citation

  • Li, Dandan & Ma, Jing & Tian, Zihao & Zhu, Hengmin, 2015. "An evolutionary game for the diffusion of rumor in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 51-58.
  • Handle: RePEc:eee:phsmap:v:433:y:2015:i:c:p:51-58
    DOI: 10.1016/j.physa.2015.03.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115003428
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.03.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    2. Zhang, Haifeng & Fu, Feng & Zhang, Wenyao & Wang, Binghong, 2012. "Rational behavior is a ‘double-edged sword’ when considering voluntary vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4807-4815.
    3. Han, Dun & Sun, Mei, 2014. "Can memory and conformism resolve the vaccination dilemma?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 95-104.
    4. Kosfeld, Michael, 2005. "Rumours and markets," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 646-664, September.
    5. Han, Shuo & Zhuang, Fuzhen & He, Qing & Shi, Zhongzhi & Ao, Xiang, 2014. "Energy model for rumor propagation on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 99-109.
    6. Li, Weihua & Tang, Shaoting & Pei, Sen & Yan, Shu & Jiang, Shijin & Teng, Xian & Zheng, Zhiming, 2014. "The rumor diffusion process with emerging independent spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 121-128.
    7. Zhang, Zi-li & Zhang, Zi-qiong, 2009. "An interplay model for rumour spreading and emergency development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4159-4166.
    8. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.
    9. Zhang, Yan, 2013. "The impact of other-regarding tendencies on the spatial vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 209-215.
    10. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    11. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajarathaiah, Koduru & Enduri, Murali Krishna & Anamalamudi, Satish, 2022. "Efficient algorithm for finding the influential nodes using local relative change of average shortest path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    4. Zhang, Yifan & Shu, Gang & Li, Ya, 2017. "Strategy-updating depending on local environment enhances cooperation in prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 224-232.
    5. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    6. Ma, Jing & Zhu, He, 2018. "Rumor diffusion in heterogeneous networks by considering the individuals’ subjective judgment and diverse characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 276-287.
    7. Lin, XuXun & Yuan, PengCheng, 2018. "A dynamic parking charge optimal control model under perspective of commuters’ evolutionary game behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1096-1110.
    8. Shu, Feng & Liu, Xingwen & Fang, Kai & Chen, Hao, 2018. "Memory-based snowdrift game on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 15-26.
    9. Chen, Yi & Ding, Shuai & Zheng, Handong & Zhang, Youtao & Yang, Shanlin, 2018. "Exploring diffusion strategies for mHealth promotion using evolutionary game model," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 148-161.
    10. Yanchao Du & Hengyu Zhou & Yongbo Yuan & Hong Xue, 2019. "Exploring the Moral Hazard Evolutionary Mechanism for BIM Implementation in an Integrated Project Team," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    11. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    12. Binghui Wu & Tingting Duan, 2019. "Nonlinear Dynamics Characteristic of Risk Contagion in Financial Market Based on Agent Modeling and Complex Network," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    13. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    14. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    15. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    16. Askarizadeh, Mojgan & Tork Ladani, Behrouz & Manshaei, Mohammad Hossein, 2019. "An evolutionary game model for analysis of rumor propagation and control in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 21-39.
    17. Han, Dun & Sun, Mei, 2016. "An evolutionary vaccination game in the modified activity driven network by considering the closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 49-57.
    18. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    19. Huige Xing & Yuelin Li & Hongyang Li, 2020. "Renegotiation Strategy of Public-Private Partnership Projects with Asymmetric Information—An Evolutionary Game Approach," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    20. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    21. Li, Ya & Chen, Shanxiong & Niu, Ben, 2018. "Reward depending on public funds stimulates cooperation in spatial prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 38-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    4. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    5. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    6. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    7. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    8. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    9. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    10. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Zhang, Yuhuai & Zhu, Jianjun, 2018. "Stability analysis of I2S2R rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 862-881.
    12. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Jiang, Guoyin & Li, Saipeng & Li, Minglei, 2020. "Dynamic rumor spreading of public opinion reversal on Weibo based on a two-stage SPNR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    15. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    17. Ma, Jing & Zhu, He, 2018. "Rumor diffusion in heterogeneous networks by considering the individuals’ subjective judgment and diverse characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 276-287.
    18. Liu, Yun & Diao, Su-Meng & Zhu, Yi-Xiang & Liu, Qing, 2016. "SHIR competitive information diffusion model for online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 543-553.
    19. Jiang, Meiling & Gao, Qingwu & Zhuang, Jun, 2021. "Reciprocal spreading and debunking processes of online misinformation: A new rumor spreading–debunking model with a case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    20. Rui, Xiaobin & Meng, Fanrong & Wang, Zhixiao & Yuan, Guan & Du, Changjiang, 2018. "SPIR: The potential spreaders involved SIR model for information diffusion in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 254-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:433:y:2015:i:c:p:51-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.