IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v446y2016icp129-137.html
   My bibliography  Save this article

Traffic-driven SIR epidemic spreading in networks

Author

Listed:
  • Pu, Cunlai
  • Li, Siyuan
  • Yang, XianXia
  • Xu, Zhongqi
  • Ji, Zexuan
  • Yang, Jian

Abstract

We study SIR epidemic spreading in networks driven by traffic dynamics, which are further governed by static routing protocols. We obtain the maximum instantaneous population of infected nodes and the maximum population of ever infected nodes through simulation. We find that generally more balanced load distribution leads to more intense and wide spread of an epidemic in networks. Increasing either average node degree or homogeneity of degree distribution will facilitate epidemic spreading. When packet generation rate ρ is small, increasing ρ favors epidemic spreading. However, when ρ is large enough, traffic congestion appears which inhibits epidemic spreading.

Suggested Citation

  • Pu, Cunlai & Li, Siyuan & Yang, XianXia & Xu, Zhongqi & Ji, Zexuan & Yang, Jian, 2016. "Traffic-driven SIR epidemic spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 129-137.
  • Handle: RePEc:eee:phsmap:v:446:y:2016:i:c:p:129-137
    DOI: 10.1016/j.physa.2015.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711501016X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
    3. Chen, Jie & Tan, Xuegang & Cao, Jinde & Li, Ming, 2022. "Effect of coupling structure on traffic-driven epidemic spreading in interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Meihui Jiang, 2022. "Locating the Principal Sectors for Carbon Emission Reduction on the Global Supply Chains by the Methods of Complex Network and Susceptible–Infective Model," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    5. Chen, Jun-Jie & Hu, Mao-Bin & Wu, Yong-Hong, 2022. "Traffic-driven epidemic spreading with non-uniform origin and destination selection," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Su, Zhu & Liu, Sannyuya & Deng, Weibing & Li, Wei & Cai, Xu, 2019. "Transportation dynamics on networks of heterogeneous mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1379-1386.
    7. Schaum, Alexander & Bernal Jaquez, Roberto, 2016. "Estimating the state probability distribution for epidemic spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 197-206.
    8. Deepti Muley & Md. Shahin & Charitha Dias & Muhammad Abdullah, 2020. "Role of Transport during Outbreak of Infectious Diseases: Evidence from the Past," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:446:y:2016:i:c:p:129-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.