IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v495y2018icp353-392.html
   My bibliography  Save this article

Influence of individual rationality on continuous double auction markets with networked traders

Author

Listed:
  • Zhang, Junhuan

Abstract

This paper investigates the influence of individual rationality of buyers and sellers on continuous double auction market outcomes in terms of the proportion of boundedly-rational buyers and sellers. The individual rationality is discussed in a social network artificial stock market model by embedding network formation and information set. Traders automatically select the most profitable trading strategy based on individual and social learning of the profits and trading strategies of themselves and their neighbors, and submit orders to markets. The results show that (i) a higher proportion of boundedly-rational sellers induces a higher market price, higher sellers’ profits and a higher market efficiency; (ii) a higher proportion of boundedly-rational sellers induces a lower number of trades and lower buyers’ profits; (iii) a higher proportion of boundedly-rational buyers induces a lower market price, a lower number of trades, and lower sellers’ profits; (iv) a higher proportion of boundedly-rational buyers induces higher buyers’ profits and a higher market efficiency.

Suggested Citation

  • Zhang, Junhuan, 2018. "Influence of individual rationality on continuous double auction markets with networked traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 353-392.
  • Handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:353-392
    DOI: 10.1016/j.physa.2017.12.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711731347X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Zeckhauser & Jayendu Patel & Darryll Hendricks, 1991. "Nonrational Actors and Financial Market Behavior," NBER Working Papers 3731, National Bureau of Economic Research, Inc.
    2. Rong, Rong & Houser, Daniel, 2015. "Growing stars: A laboratory analysis of network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 380-394.
    3. Li, Shouwei & Zhuang, Yangyang & He, Jianmin, 2016. "Stock market stability: Diffusion entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 462-465.
    4. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    5. S. Alfarano & M. Milakovic & M. Raddant, 2013. "A note on institutional hierarchy and volatility in financial markets," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 449-465, July.
    6. H. E. Stanley & V. Plerou, 2001. "Scaling and universality in economics: empirical results and theoretical interpretation," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 563-567.
    7. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    8. Smith, Vernon L, 1982. "Microeconomic Systems as an Experimental Science," American Economic Review, American Economic Association, vol. 72(5), pages 923-955, December.
    9. Forsythe, Robert & Rietz, Thomas A. & Ross, Thomas W., 1999. "Wishes, expectations and actions: a survey on price formation in election stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 83-110, May.
    10. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    11. Vernon L. Smith, 1962. "An Experimental Study of Competitive Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 70(2), pages 111-111.
    12. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    13. Steven Gjerstad & Jason M. Shachat, 2007. "Individual Rationality and Market Efficiency," Purdue University Economics Working Papers 1204, Purdue University, Department of Economics.
    14. Forsythe, Robert & Palfrey, Thomas R & Plott, Charles R, 1982. "Asset Valuation in an Experimental Market," Econometrica, Econometric Society, vol. 50(3), pages 537-567, May.
    15. Han N. Ozsoylev & Johan Walden & M. Deniz Yavuz & Recep Bildik, 2014. "Investor Networks in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1323-1366.
    16. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    17. Fang, Wen & Wang, Jun, 2013. "Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4055-4063.
    18. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    19. Hongli Niu & Jun Wang, 2013. "Power-law scaling behavior analysis of financial time series model by voter interacting dynamic system," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2188-2203, October.
    20. Smith, Vernon L & Suchanek, Gerry L & Williams, Arlington W, 1988. "Bubbles, Crashes, and Endogenous Expectations in Experimental Spot Asset Markets," Econometrica, Econometric Society, vol. 56(5), pages 1119-1151, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yali & Wang, Jun, 2019. "Linkage influence of energy market on financial market by multiscale complexity synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 254-266.
    2. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2019. "Volatility aggregation intensity energy futures series on stochastic finite-range exclusion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 370-383.
    3. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Zhang, Bo & Wang, Guochao & Wang, Yiduan & Zhang, Wei & Wang, Jun, 2019. "Multiscale statistical behaviors for Ising financial dynamics with continuum percolation jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1012-1025.
    5. Wang, Wentao & Zhang, Junhuan & Zhao, Shangmei & Zhang, Yanglin, 2019. "Simulation of asset pricing in information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 620-634.
    6. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    8. Riya Kakkar & Rajesh Gupta & Smita Agrawal & Pronaya Bhattacharya & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba, 2022. "Blockchain and Double Auction-Based Trustful EVs Energy Trading Scheme for Optimum Pricing," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    9. Xing, Yani & Wang, Jun, 2019. "Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 234-247.
    10. Fang, Wen & Tian, Shaolin & Wang, Jun, 2018. "Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 109-120.
    11. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    12. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    13. Wang, Yiduan & Zheng, Shenzhou & Zhang, Wei & Wang, Guochao & Wang, Jun, 2018. "Fuzzy entropy complexity and multifractal behavior of statistical physics financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 486-498.
    14. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2020. "Fluctuation behavior analysis of stochastic exclusion financial dynamics with random jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    2. Jakob Grazzini, 2013. "Information dissemination in an experimentally based agent-based stock market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 179-209, April.
    3. Lu, Dong & Zhan, Yaosong, 2022. "Over-the-counter versus double auction in asset markets with near-zero-intelligence traders," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    4. Lange, Andreas & Ross, Johannes, 2024. "Internalizing match-dependent externalities," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 356-378.
    5. Palan, Stefan, 2010. "Digital options and efficiency in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 506-522, September.
    6. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    7. Eric M. Aldrich & Kristian López Vargas, 2020. "Experiments in high-frequency trading: comparing two market institutions," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 322-352, June.
    8. Jens Grossklags & Carsten Schmidt, 2002. "Artificial Software Agents on Thin Double Auction Markets - A Human Trader Experiment," Papers on Strategic Interaction 2002-45, Max Planck Institute of Economics, Strategic Interaction Group.
    9. Charles N. Noussair & Steven Tucker, 2013. "Experimental Research On Asset Pricing," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 554-569, July.
    10. Brewer, Paul & Ratan, Anmol, 2019. "Profitability, efficiency, and inequality in double auction markets with snipers," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 486-499.
    11. Ross M. Miller, 2012. "The Effect Of Boundary Conditions On Efficiency And Pricing In Double‐Auction Markets With Zero‐Intelligence Agents," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(3), pages 179-188, July.
    12. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    13. Omar Al-Ubaydli & John List, 2016. "Field Experiments in Markets," Artefactual Field Experiments j0002, The Field Experiments Website.
    14. Heemeijer, Peter & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2009. "Price stability and volatility in markets with positive and negative expectations feedback: An experimental investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1052-1072, May.
    15. Katerina Sherstyuk & Krit Phankitnirundorn & Michael J. Roberts, 2021. "Randomized double auctions: gains from trade, trader roles, and price discovery," Experimental Economics, Springer;Economic Science Association, vol. 24(4), pages 1325-1364, December.
    16. Steven Gjerstad, 2013. "Price dynamics in an exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(2), pages 461-500, March.
    17. Alex Richardson & Shirley Gregor & Richard Heaney, 2012. "Using decision support to manage the influence of cognitive abilities on share trading performance," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 523-541, December.
    18. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    19. Flåm, S.D. & Godal, O., 2008. "Market clearing and price formation," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 956-977, March.
    20. Edward Halim & Yohanes E. Riyanto & Nilanjan Roy, 2019. "Costly Information Acquisition, Social Networks, and Asset Prices: Experimental Evidence," Journal of Finance, American Finance Association, vol. 74(4), pages 1975-2010, August.

    More about this item

    Keywords

    Double auctions; Individual rationality; Social networks; Algorithmic trading; Agent-based modeling;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:495:y:2018:i:c:p:353-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.