IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp620-634.html
   My bibliography  Save this article

Simulation of asset pricing in information networks

Author

Listed:
  • Wang, Wentao
  • Zhang, Junhuan
  • Zhao, Shangmei
  • Zhang, Yanglin

Abstract

We simulate the asset pricing in the framework of information networks when the number of agents is constant and tends to infinity. When the number of agents is a constant, we find that a higher risk aversion coefficient, a lower information uncertainty, or a higher standard variance of payoff volatility induces a lower asset price; a higher number of agents induces a higher aggregate demand. When the number of agents tends to infinity, we study and simulate the closed form expressions for asset price with risk aversion coefficient. We find that a higher network connectedness or a lower risk aversion coefficient induces a higher information driven volatility component and a lower Sharpe ratio; a higher network connectedness or a lower risk aversion coefficient induces a higher market efficiency. Liquidity driven volatility component, trading profit, price volatility are non-monotonic functions of network connectedness, or risk aversion coefficient.

Suggested Citation

  • Wang, Wentao & Zhang, Junhuan & Zhao, Shangmei & Zhang, Yanglin, 2019. "Simulation of asset pricing in information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 620-634.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:620-634
    DOI: 10.1016/j.physa.2018.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311543
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauren Cohen & Andrea Frazzini & Christopher Malloy, 2008. "The Small World of Investing: Board Connections and Mutual Fund Returns," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 951-979, October.
    2. Zoran Ivkovi & Scott Weisbenner, 2007. "Information Diffusion Effects in Individual Investors' Common Stock Purchases: Covet Thy Neighbors' Investment Choices," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1327-1357.
    3. Paolo Colla & Antonio Mele, 2010. "Information Linkages and Correlated Trading," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 203-246, January.
    4. Khandani, Amir E. & Lo, Andrew W., 2011. "What happened to the quants in August 2007? Evidence from factors and transactions data," Journal of Financial Markets, Elsevier, vol. 14(1), pages 1-46, February.
    5. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    6. Zhang, Junhuan, 2018. "Influence of individual rationality on continuous double auction markets with networked traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 353-392.
    7. Vives, Xavier, 1995. "Short-Term Investment and the Informational Efficiency of the Market," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 125-160.
    8. Diamond, Douglas W. & Verrecchia, Robert E., 1981. "Information aggregation in a noisy rational expectations economy," Journal of Financial Economics, Elsevier, vol. 9(3), pages 221-235, September.
    9. Fafchamps, Marcel & Lund, Susan, 2003. "Risk-sharing networks in rural Philippines," Journal of Development Economics, Elsevier, vol. 71(2), pages 261-287, August.
    10. Admati, Anat R, 1985. "A Noisy Rational Expectations Equilibrium for Multi-asset Securities Markets," Econometrica, Econometric Society, vol. 53(3), pages 629-657, May.
    11. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    12. Di Xiao & Jun Wang & Hongli Niu, 2016. "Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 607-625, December.
    13. Harrison Hong & Jeffrey D. Kubik & Jeremy C. Stein, 2001. "Social Interaction and Stock-Market Participation," NBER Working Papers 8358, National Bureau of Economic Research, Inc.
    14. Ozsoylev, Han N. & Walden, Johan, 2011. "Asset pricing in large information networks," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2252-2280.
    15. Hellwig, Martin F., 1980. "On the aggregation of information in competitive markets," Journal of Economic Theory, Elsevier, vol. 22(3), pages 477-498, June.
    16. Fang, Wen & Wang, Jun, 2013. "Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4055-4063.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2020. "Fluctuation behavior analysis of stochastic exclusion financial dynamics with random jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Wang, Wentao & Zhao, Shangmei & Zhang, Junhuan, 2022. "Multi-asset pricing modeling using holding-based networks in energy markets," Finance Research Letters, Elsevier, vol. 46(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozsoylev, Han N. & Walden, Johan, 2011. "Asset pricing in large information networks," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2252-2280.
    2. Bing Han & Liyan Yang, 2013. "Social Networks, Information Acquisition, and Asset Prices," Management Science, INFORMS, vol. 59(6), pages 1444-1457, June.
    3. Pedersen, Lasse Heje, 2022. "Game on: Social networks and markets," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1097-1119.
    4. Lou, Youcheng & Parsa, Sahar & Ray, Debraj & Li, Duan & Wang, Shouyang, 2019. "Information aggregation in a financial market with general signal structure," Journal of Economic Theory, Elsevier, vol. 183(C), pages 594-624.
    5. Wang, Wentao & Zhao, Shangmei & Zhang, Junhuan, 2022. "Multi-asset pricing modeling using holding-based networks in energy markets," Finance Research Letters, Elsevier, vol. 46(PB).
    6. Lou, Youcheng & Yang, Yaqing, 2023. "Information linkages in a financial market with imperfect competition," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    7. Huan Liu & Weiqi Liu & Yi Li, 2022. "Private Information Dissemination and Noise Trading: Implications for Price Efficiency and Market Liquidity," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    8. Edward Halim & Yohanes E. Riyanto & Nilanjan Roy, 2019. "Costly Information Acquisition, Social Networks, and Asset Prices: Experimental Evidence," Journal of Finance, American Finance Association, vol. 74(4), pages 1975-2010, August.
    9. Giovanni Cespa, 2004. "A Comparison of Stock Market Mechanisms," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 803-824, Winter.
    10. Kovalenkov, Alexander & Vives, Xavier, 2014. "Competitive rational expectations equilibria without apology," Journal of Economic Theory, Elsevier, vol. 149(C), pages 211-235.
    11. Ardalan, Kavous, 1998. "Financial markets with asymmetric information: An expository review of seminal models," International Review of Economics & Finance, Elsevier, vol. 7(1), pages 23-51.
    12. Philippe Bacchetta & Eric Van Wincoop, 2006. "Can Information Heterogeneity Explain the Exchange Rate Determination Puzzle?," American Economic Review, American Economic Association, vol. 96(3), pages 552-576, June.
    13. Cujean, Julien, 2020. "Idea sharing and the performance of mutual funds," Journal of Financial Economics, Elsevier, vol. 135(1), pages 88-119.
    14. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2018. "Network centrality and delegated investment performance," Journal of Financial Economics, Elsevier, vol. 128(1), pages 183-206.
    15. Han Ozsoylev & Jan Werner, 2011. "Liquidity and asset prices in rational expectations equilibrium with ambiguous information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(2), pages 469-491, October.
    16. Ouzan, Samuel, 2020. "Loss aversion and market crashes," Economic Modelling, Elsevier, vol. 92(C), pages 70-86.
    17. Cujean, Julien, 2018. "Idea Sharing and the Performance of Mutual Funds," CEPR Discussion Papers 13111, C.E.P.R. Discussion Papers.
    18. García, Diego & Urošević, Branko, 2013. "Noise and aggregation of information in large markets," Journal of Financial Markets, Elsevier, vol. 16(3), pages 526-549.
    19. Xing, Yani & Wang, Jun, 2019. "Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 234-247.
    20. Luo, Ronghua & Zhao, Senyang & Zhou, Jing, 2023. "Information network, public disclosure and asset prices," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:620-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.