IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v597y2022ics0378437122001984.html
   My bibliography  Save this article

SEI2RS malware propagation model considering two infection rates in cyber–physical systems

Author

Listed:
  • Yu, Zhenhua
  • Gao, Hongxia
  • Wang, Dan
  • Alnuaim, Abeer Ali
  • Firdausi, Muhammad
  • Mostafa, Almetwally M.

Abstract

Cyber–physical systems (CPSs) are new types of intelligent systems that integrate computing, control, and communication technologies, and bridge cyberspace and physical world. CPSs are widely used in many security-critical areas, but they are vulnerable to virus infections and malicious code attacks, which can cause damage to their functions and security incidents. To study the influence of malware on CPSs, this paper proposes a Susceptible–Exposed–Infected1–Infected2–Removed (SEI2RS) model with different infection rates to study malware propagation in CPSs. First, we establish the nonlinear dynamic equation of malware propagation, and calculate the equilibria and basic reproduction number of the model. In addition, the local asymptotic stability and global asymptotic stability at the equilibria are proved by using Lyapunov theorem and Routh–Hurwitz criterion, and the transcritical bifurcation phenomenon is analyzed. Finally, we also carry out some simulations to simulate malware spreading in CPSs. The simulation results illustrate the existence of the equilibria, the stability and the transcritical bifurcation, which verify the effectiveness of the theoretical results.

Suggested Citation

  • Yu, Zhenhua & Gao, Hongxia & Wang, Dan & Alnuaim, Abeer Ali & Firdausi, Muhammad & Mostafa, Almetwally M., 2022. "SEI2RS malware propagation model considering two infection rates in cyber–physical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
  • Handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122001984
    DOI: 10.1016/j.physa.2022.127207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001984
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernández Guillén, J.D. & Martín del Rey, A. & Hernández Encinas, L., 2017. "Study of the stability of a SEIRS model for computer worm propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 411-421.
    2. Hosseini, Soodeh & Azgomi, Mohammad Abdollahi, 2019. "Dynamical analysis of a malware propagation model considering the impacts of mobile devices and software diversification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Xia, Ling-Ling & Jiang, Guo-Ping & Song, Bo & Song, Yu-Rong, 2015. "Rumor spreading model considering hesitating mechanism in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 295-303.
    4. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Khan, Muhammad Altaf & Khan, Yasir & Islam, Saeed, 2018. "Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 210-227.
    6. Jianguo Ren & Yonghong Xu & Jiming Liu, 2014. "Global Bifurcation of a Novel Computer Virus Propagation Model," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, April.
    7. José Roberto C. Piqueira & Cristiane M. Batistela, 2019. "Considering Quarantine in the SIRA Malware Propagation Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, November.
    8. Yu, Zhenhua & Arif, Robia & Fahmy, Mohamed Abdelsabour & Sohail, Ayesha, 2021. "Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    2. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    3. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    6. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    7. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    8. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    9. Gao, Qingwu & Zhuang, Jun, 2020. "Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    10. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    11. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    12. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    13. Dong, Suyalatu & Deng, Yanbin & Huang, Yong-Chang, 2019. "Exact analytic solution to nonlinear dynamic system of equations for information propagation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 319-329.
    14. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    15. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    16. Wang, Fuzhang & Idrees, M & Sohail, Ayesha, 2022. "“AI-MCMC” for the parametric analysis of the hormonal therapy of cancer," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    17. Tong Chen & Ziqing Chen & Xuejun Jin, 2021. "A multiple information model incorporating limited attention and information environment," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    18. Halet Ismail & Amar Debbouche & Soundararajan Hariharan & Lingeshwaran Shangerganesh & Stanislava V. Kashtanova, 2024. "Stability and Optimality Criteria for an SVIR Epidemic Model with Numerical Simulation," Mathematics, MDPI, vol. 12(20), pages 1-29, October.
    19. Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
    20. Yan, Fuhan & Li, Zhaofeng & Jiang, Yichuan, 2016. "Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 85-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122001984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.