IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v442y2016icp523-531.html
   My bibliography  Save this article

Predicting item popularity: Analysing local clustering behaviour of users

Author

Listed:
  • Liebig, Jessica
  • Rao, Asha

Abstract

Predicting the popularity of items in rating networks is an interesting but challenging problem. This is especially so when an item has first appeared and has received very few ratings. In this paper, we propose a novel approach to predicting the future popularity of new items in rating networks, defining a new bipartite clustering coefficient to predict the popularity of movies and stories in the MovieLens and Digg networks respectively. We show that the clustering behaviour of the first user who rates a new item gives insight into the future popularity of that item. Our method predicts, with a success rate of over 65% for the MovieLens network and over 50% for the Digg network, the future popularity of an item. This is a major improvement on current results.

Suggested Citation

  • Liebig, Jessica & Rao, Asha, 2016. "Predicting item popularity: Analysing local clustering behaviour of users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 523-531.
  • Handle: RePEc:eee:phsmap:v:442:y:2016:i:c:p:523-531
    DOI: 10.1016/j.physa.2015.08.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007104
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.08.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    2. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    3. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    4. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    5. Zhang, Peng & Wang, Jinliang & Li, Xiaojia & Li, Menghui & Di, Zengru & Fan, Ying, 2008. "Clustering coefficient and community structure of bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6869-6875.
    6. Garry Robins & Malcolm Alexander, 2004. "Small Worlds Among Interlocking Directors: Network Structure and Distance in Bipartite Graphs," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 69-94, May.
    7. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    8. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    9. An Zeng & Stanislao Gualdi & Matúš Medo & Yi-Cheng Zhang, 2013. "Trend Prediction In Temporal Bipartite Networks: The Case Of Movielens, Netflix, And Digg," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yunpeng & Xie, Xiaoqiu & Li, Qian & Li, Tun, 2019. "Nonlinear dynamics model for social popularity prediction based on multivariate chaotic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1259-1275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    2. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    3. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    4. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    6. Liu, Yang & Wei, Bo & Du, Yuxian & Xiao, Fuyuan & Deng, Yong, 2016. "Identifying influential spreaders by weight degree centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 1-7.
    7. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Shokrollahi, Arman, 2015. "Improving detection of influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 833-845.
    8. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.
    9. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    10. Liu, Jie & Li, Yunpeng & Ruan, Zichan & Fu, Guangyuan & Chen, Xiaowu & Sadiq, Rehan & Deng, Yong, 2015. "A new method to construct co-author networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 29-39.
    11. Du, Yuxian & Gao, Cai & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A new method of identifying influential nodes in complex networks based on TOPSIS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 57-69.
    12. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    13. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    14. Su, Xiaoyan & Mahadevan, Sankaran & Xu, Peida & Deng, Yong, 2014. "Inclusion of task dependence in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 41-55.
    15. Xu, Shuang & Wang, Pei & Zhang, Chunxia, 2019. "Identification of influential spreaders in bipartite networks:A singular value decomposition approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 297-306.
    16. Feng-Que Pei & Dong-Bo Li & Yi-Fei Tong & Fei He, 2017. "Process service quality evaluation based on Dempster-Shafer theory and support vector machine," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    17. Singh, Priti & Chakraborty, Abhishek & Manoj, B.S., 2017. "Link Influence Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 701-713.
    18. Liu, Jun & Xiong, Qingyu & Shi, Weiren & Shi, Xin & Wang, Kai, 2016. "Evaluating the importance of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 209-219.
    19. Ma, Qian & Ma, Jun, 2017. "Identifying and ranking influential spreaders in complex networks with consideration of spreading probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 312-330.
    20. Gao, Shuai & Ma, Jun & Chen, Zhumin & Wang, Guanghui & Xing, Changming, 2014. "Ranking the spreading ability of nodes in complex networks based on local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 130-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:442:y:2016:i:c:p:523-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.