IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v16y2013i04n05ns0219525913500240.html
   My bibliography  Save this article

Trend Prediction In Temporal Bipartite Networks: The Case Of Movielens, Netflix, And Digg

Author

Listed:
  • AN ZENG

    (Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland)

  • STANISLAO GUALDI

    (Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland)

  • MATÚŠ MEDO

    (Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland)

  • YI-CHENG ZHANG

    (Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland)

Abstract

Online systems, where users purchase or collect items of some kind, can be effectively represented by temporal bipartite networks where both nodes and links are added with time. We use this representation to predict which items might become popular in the near future. Various prediction methods are evaluated on three distinct datasets originating from popular online services (Movielens, Netflix, and Digg). We show that the prediction performance can be further enhanced if the user social network is known and centrality of individual users in this network is used to weight their actions.

Suggested Citation

  • An Zeng & Stanislao Gualdi & Matúš Medo & Yi-Cheng Zhang, 2013. "Trend Prediction In Temporal Bipartite Networks: The Case Of Movielens, Netflix, And Digg," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-15.
  • Handle: RePEc:wsi:acsxxx:v:16:y:2013:i:04n05:n:s0219525913500240
    DOI: 10.1142/S0219525913500240
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525913500240
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525913500240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Ming-Yang Zhou & Yi-Cheng Zhang, 2018. "Enhancing Countries’ Fitness with Recommender Systems on the International Trade Network," Complexity, Hindawi, vol. 2018, pages 1-12, October.
    2. Wu, Jiayun & He, Langzhou & Jia, Tao & Tao, Li, 2023. "Temporal link prediction based on node dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Liebig, Jessica & Rao, Asha, 2016. "Predicting item popularity: Analysing local clustering behaviour of users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 523-531.
    4. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Mingyang Zhou & Yi-Cheng Zhang, 2019. "Enhancing countries' fitness with recommender systems on the international trade network," Papers 1904.02412, arXiv.org.
    5. Li, Wen-Jun & Dong, Qiang & Shi, Yang-Bo & Fu, Yan & He, Jia-Lin, 2017. "Effect of recent popularity on heat-conduction based recommendation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 334-343.
    6. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    7. Wang, Xi & Li, Heyang & Zeng, An, 2018. "Quantifying users’ selection behavior in online commercial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 86-95.
    8. Li, Heyang & Zeng, An, 2022. "Improving recommendation by connecting user behavior in temporal and topological dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Zhou, Yanbo & Li, Qu & Yang, Xuhua & Cheng, Hongbing, 2021. "Predicting the popularity of scientific publications by an age-based diffusion model," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:16:y:2013:i:04n05:n:s0219525913500240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.