IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v33y2021ics187454822100024x.html
   My bibliography  Save this article

Robustness of the Chinese power grid to cascading failures under attack and defense strategies

Author

Listed:
  • Li, Kaiwen
  • Liu, Kai
  • Wang, Ming

Abstract

The power grid system is one of the most important and complex infrastructure systems in our society. Catastrophic blackouts caused by cascading failures, however, still occur and lead to devastating effects. Here, for the first time, we investigate the robustness of the Chinese power grid (CPG) system under various attack and defense scenarios by considering cascading failures. The simulation results illustrate that the effect of the loading level of the power grid network has a large influence on the cascading process. When the initial load of the edge is smaller (α ≤ 1.6), the ascending order strategy of the edge collective influence is the most effective attack strategy for triggering cascading failures over the CPG network. While when the initial load of the edge is larger (α≥1.6), the high load strategy appears to outperform the other strategies. To protect the national power grid from cascading failure, two approaches can be adopted: one approach is to improve the network load capacity, and the other approach is to protect the critical edges. The efforts needed to improve the cascading robustness of the CPG network within these two approaches are quantified. Our results can guide protective measures to avoid large cascading failures and are useful for the design of a robust national power grid network.

Suggested Citation

  • Li, Kaiwen & Liu, Kai & Wang, Ming, 2021. "Robustness of the Chinese power grid to cascading failures under attack and defense strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
  • Handle: RePEc:eee:ijocip:v:33:y:2021:i:c:s187454822100024x
    DOI: 10.1016/j.ijcip.2021.100432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S187454822100024X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2021.100432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Peng & Wang, Jinliang & Li, Xiaojia & Li, Menghui & Di, Zengru & Fan, Ying, 2008. "Clustering coefficient and community structure of bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6869-6875.
    2. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    3. Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
    4. Wang, Shuliang & Zhang, Jianhua & Duan, Na, 2018. "Multiple perspective vulnerability analysis of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1581-1590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Zhang & Limin Jia & Jin Ning & Yujiang Ye & Hao Sun & Ruifeng Shi, 2023. "Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis," Energies, MDPI, vol. 16(2), pages 1-15, January.
    2. Ma, Shan & Shen, Binda & Ma, Junfeng & Hu, Wenfeng & Peng, Tao, 2023. "Improvement of network robustness against cascading failures based on the min–max edge-adding strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    3. Zhang, Yushuai & Ren, Wangjun & Feng, Jinji & Zhao, Jian & Chen, Yicun & Mi, Yongtao, 2024. "A cascading failure propagation model for a network with a node emergency recovery function," Applied Energy, Elsevier, vol. 371(C).
    4. Wang, Shuliang & Dong, Qiqi, 2023. "A multi-source power grid's resilience enhancement strategy based on subnet division and power dispatch," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    5. Chen, Jiarui & Lu, Yiqin & Zhang, Yang & Huang, Fang & Qin, Jiancheng, 2023. "A management knowledge graph approach for critical infrastructure protection: Ontology design, information extraction and relation prediction," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    6. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuang & Wang, Pei & Zhang, Chunxia, 2019. "Identification of influential spreaders in bipartite networks:A singular value decomposition approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 297-306.
    2. Ramadiah, Amanah & Caccioli, Fabio & Fricke, Daniel, 2020. "Reconstructing and stress testing credit networks," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Yi, Dongyun, 2018. "Effectively identifying multiple influential spreaders in term of the backward–forward propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 404-413.
    5. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    6. Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    8. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    9. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    11. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    12. Kyu-Min Lee & Kwang-Il Goh, 2016. "Strength of weak layers in cascading failures on multiplex networks: case of the international trade network," Papers 1603.05181, arXiv.org, revised May 2016.
    13. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    15. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    16. Wenguo Yang & Shengminjie Chen & Suixiang Gao & Ruidong Yan, 2020. "Boosting node activity by recommendations in social networks," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 825-847, October.
    17. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    18. Xiaodong Liu & Xiangke Liao & Shanshan Li & Si Zheng & Bin Lin & Jingying Zhang & Lisong Shao & Chenlin Huang & Liquan Xiao, 2017. "On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    19. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    20. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:33:y:2021:i:c:s187454822100024x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.