IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v77y2015icp47-52.html
   My bibliography  Save this article

Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas

Author

Listed:
  • Hu, Menglong
  • Wang, Juan
  • Kong, Lingcong
  • An, Kang
  • Bi, Tao
  • Guo, Baohong
  • Dong, Enzeng

Abstract

We propose an improved fitness evaluation method to investigate the evolution of cooperation in the spatial social dilemmas. In our model, a focal player’s fitness is calculated as the linear combination of his own payoff, the average payoffs of direct and indirect neighbors in which two independent selection parameters (α and β) are used to control the proportion of various payoff contribution to the current fitness. Then, the fitness-based strategy update rule is still Fermi-like, and asynchronous update is adopted here. A large plethora of numerical simulations are performed to validate the behaviors of the current model, and the results unambiguously demonstrate that the cooperation level is greatly enhanced by introducing the payoffs from the surrounding players. In particular, the influence of direct neighbors become more evident when compared with indirect neighbors since the correlation between focal players and their direct neighbors is much closer. Current outcomes are significant for us to further illustrate the origin and emergence of cooperation within a wide variety of natural and man-made systems.

Suggested Citation

  • Hu, Menglong & Wang, Juan & Kong, Lingcong & An, Kang & Bi, Tao & Guo, Baohong & Dong, Enzeng, 2015. "Incorporating the information from direct and indirect neighbors into fitness evaluation enhances the cooperation in the social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 47-52.
  • Handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:47-52
    DOI: 10.1016/j.chaos.2015.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915001253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Wang & Lin Wang & Zi-Yu Yin & Cheng-Yi Xia, 2012. "Inferring Reputation Promotes the Evolution of Cooperation in Spatial Social Dilemma Games," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    2. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    3. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    4. Sun, Shiwen & Liu, Zhongxin & Chen, Zengqiang & Yuan, Zhuzhi, 2007. "Error and attack tolerance of evolving networks with local preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 851-860.
    5. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    6. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    7. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    8. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    9. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    10. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    11. Wang, Zhen & Du, Wen-Bo & Cao, Xian-Bin & Zhang, Lian-Zhong, 2011. "Integrating neighborhoods in the evaluation of fitness promotes cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1234-1239.
    12. Jin, Qing & Wang, Zhen & Wang, Zhen & Wang, Yi-Ling, 2012. "Strategy changing penalty promotes cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 395-401.
    13. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    14. Xia, Cheng-yi & Ma, Zhi-qin & Wang, Zhen & Wang, Juan, 2012. "Evaluating fitness by integrating the highest payoff within the neighborhood promotes cooperation in social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6440-6447.
    15. Cheng-Yi Xia & Sandro Meloni & Yamir Moreno, 2012. "Effects Of Environment Knowledge On Agglomeration And Cooperation In Spatial Public Goods Games," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu, Gang & Du, Xia & Li, Ya, 2016. "Surrounding information consideration promotes cooperation in Prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 689-694.
    2. Kojo, Ken'ichi & Sakiyama, Tomoko, 2024. "Restructuring of neighborhood definition based on strategies will enhance the cooperation in a spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Shen, Chen & Li, Xiaoping & Shi, Lei & Deng, Zhenghong, 2017. "Asymmetric evaluation promotes cooperation in network population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 391-397.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    2. Wang, Zhen & Wu, Bin & Li, Ya-peng & Gao, Hang-xian & Li, Ming-chu, 2013. "Does coveting the performance of neighbors of thy neighbor enhance spatial reciprocity?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 28-34.
    3. Xia, Chengyi & Miao, Qin & Zhang, Juanjuan, 2013. "Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 22-30.
    4. Wang, Yi-Ling, 2013. "Learning ability driven by majority selection enhances spatial reciprocity in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 96-100.
    5. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    6. Tian, Lin-Lin & Li, Ming-Chu & Lu, Kun & Zhao, Xiao-Wei & Wang, Zhen, 2013. "The influence of age-driven investment on cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 65-70.
    7. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    8. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    9. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    10. Kohei Miyaji & Jun Tanimoto & Zhen Wang & Aya Hagishima & Naoki Ikegaya, 2013. "Direct Reciprocity in Spatial Populations Enhances R-Reciprocity As Well As ST-Reciprocity," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    11. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Chen, Zhi-Gang & Wang, Tao & Xiao, De-Gui & Xu, Yin, 2013. "Can remembering history from predecessor promote cooperation in the next generation?," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 59-68.
    13. Li, Hong-yang & Xiao, Jian & Li, Yu-meng & Wang, Zhen, 2013. "Effects of neighborhood type and size in spatial public goods game on diluted lattice," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 145-153.
    14. Yi-Ling, Wang & Gui-Qing, Zhang, 2013. "Optimal convergence in fame game with familiarity," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 222-226.
    15. Lu, Kun & Wu, Bin & Li, Ming-chu & Wang, Zhen, 2014. "Other-regarding preference causing ping-pong effect in self-questioning game," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 51-58.
    16. Ding, Shuai & Wang, Juan & Ruan, Sumei & Xia, Chengyi, 2015. "Inferring to individual diversity promotes the cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 71(C), pages 91-99.
    17. Xia, Chengyi & Wang, Juan & Wang, Li & Sun, Shiwen & Sun, Junqing & Wang, Jinsong, 2012. "Role of update dynamics in the collective cooperation on the spatial snowdrift games: Beyond unconditional imitation and replicator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1239-1245.
    18. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    19. Jin, Jiahua & Shen, Chen & Chu, Chen & Shi, Lei, 2017. "Incorporating dominant environment into individual fitness promotes cooperation in the spatial prisoners' dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 70-75.
    20. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:77:y:2015:i:c:p:47-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.