IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp667-673.html
   My bibliography  Save this article

Some results on Tsallis entropy measure and k-record values

Author

Listed:
  • Kumar, Vikas

Abstract

Extensive or non-extensive statistical mechanics arise from the additive or non-additivity of the corresponding entropy measures. Non-additive entropy measures are important for many applications. In this article, we consider and study a non-additive Tsallis entropy for k-record statistics from some continuous probability models. Furthermore, we prove a characterization result for the Tsallis entropy of k-record values. At the end, we study Tsallis residual entropy for k-record statistics.

Suggested Citation

  • Kumar, Vikas, 2016. "Some results on Tsallis entropy measure and k-record values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 667-673.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:667-673
    DOI: 10.1016/j.physa.2016.05.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302643
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Vikas, 2015. "Generalized entropy measure in record values and its applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 46-51.
    2. Fashandi, M. & Ahmadi, Jafar, 2012. "Characterizations of symmetric distributions based on Rényi entropy," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 798-804.
    3. Felix Belzunce & Jorge Navarro & José M. Ruiz & Yolanda del Aguila, 2004. "Some results on residual entropy function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(2), pages 147-161, May.
    4. S. Baratpour & J. Ahmadi & N. Arghami, 2007. "Entropy properties of record statistics," Statistical Papers, Springer, vol. 48(2), pages 197-213, April.
    5. Tong, S. & Bezerianos, A. & Paul, J. & Zhu, Y. & Thakor, N., 2002. "Nonextensive entropy measure of EEG following brain injury from cardiac arrest," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(3), pages 619-628.
    6. Thapliyal, Richa & Taneja, H.C. & Kumar, Vikas, 2015. "Characterization results based on non-additive entropy of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    2. Balakrishnan, Narayanaswamy & Buono, Francesco & Longobardi, Maria, 2022. "A unified formulation of entropy and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Aswathy S. Krishnan & S. M. Sunoj & P. G. Sankaran, 2019. "Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 17-38, January.
    4. Kumar, Vikas & Rekha,, 2018. "A quantile approach of Tsallis entropy for order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 916-928.
    5. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "Information geometry on the curved q-exponential family with application to survival data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 788-802.
    6. Calì, Camilla & Longobardi, Maria & Ahmadi, Jafar, 2017. "Some properties of cumulative Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1012-1021.
    7. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "On alternative q-Weibull and q-extreme value distributions: Properties and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1171-1190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goel, Ritu & Taneja, H.C. & Kumar, Vikas, 2018. "Measure of entropy for past lifetime and k-record statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 623-631.
    2. Ahmadi, J. & Fashandi, M., 2019. "Characterization of symmetric distributions based on some information measures properties of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 141-152.
    3. Qiu, Guoxin, 2017. "The extropy of order statistics and record values," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 52-60.
    4. Tahmasebi, S. & Longobardi, M. & Kazemi, M.R. & Alizadeh, M., 2020. "Cumulative Tsallis entropy for maximum ranked set sampling with unequal samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Sunoj, S.M. & Krishnan, Aswathy S. & Sankaran, P.G., 2018. "A quantile-based study of cumulative residual Tsallis entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 410-421.
    6. Maryam Eskandarzadeh & Antonio Di Crescenzo & Saeid Tahmasebi, 2019. "Cumulative Measure of Inaccuracy and Mutual Information in k -th Lower Record Values," Mathematics, MDPI, vol. 7(2), pages 1-19, February.
    7. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    8. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    9. Gradojevic, Nikola & Gencay, Ramazan, 2008. "Overnight interest rates and aggregate market expectations," Economics Letters, Elsevier, vol. 100(1), pages 27-30, July.
    10. K. Nair & P. Sankaran & S. Smitha, 2011. "Chernoff distance for truncated distributions," Statistical Papers, Springer, vol. 52(4), pages 893-909, November.
    11. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Kumar, Vikas & Rekha,, 2018. "A quantile approach of Tsallis entropy for order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 916-928.
    13. Abbasnejad, M. & Arghami, N.R. & Morgenthaler, S. & Mohtashami Borzadaran, G.R., 2010. "On the dynamic survival entropy," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1962-1971, December.
    14. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    15. Thapliyal, Richa & Taneja, H.C. & Kumar, Vikas, 2015. "Characterization results based on non-additive entropy of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 297-303.
    16. G. Asha & C. Rejeesh, 2015. "Characterizations using past entropy measures," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 119-134, April.
    17. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.
    18. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    19. Sangun Park & Johan Lim, 2015. "On censored cumulative residual Kullback–Leibler information and goodness-of-fit test with type II censored data," Statistical Papers, Springer, vol. 56(1), pages 247-256, February.
    20. Misagh, F. & Yari, G.H., 2011. "On weighted interval entropy," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 188-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:667-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.