IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i4p798-804.html
   My bibliography  Save this article

Characterizations of symmetric distributions based on Rényi entropy

Author

Listed:
  • Fashandi, M.
  • Ahmadi, Jafar

Abstract

It is proved that the equality of Rényi entropies of upper and lower order statistics as well as upper and lower k-records is a characteristic property of symmetric distributions. Also, for Farlie–Gumbel–Morgenstern (FGM) family, it is shown that under some conditions the equality of entropies of concomitants of upper and lower order statistics as well as concomitants of upper and lower record values is a characteristic property for the uniform distribution.

Suggested Citation

  • Fashandi, M. & Ahmadi, Jafar, 2012. "Characterizations of symmetric distributions based on Rényi entropy," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 798-804.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:798-804
    DOI: 10.1016/j.spl.2012.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hofmann, Glenn & Balakrishnan, N. & Ahmadi, Jafar, 2005. "Characterization of hazard function factorization by Fisher information in minima and upper record values," Statistics & Probability Letters, Elsevier, vol. 72(1), pages 51-57, April.
    2. Ahmadi, Jafar & Fashandi, M., 2009. "Some characterization and ordering results based on entropies of current records," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2053-2059, October.
    3. Zheng, Gang, 2001. "A characterization of the factorization of hazard function by the Fisher information under Type II censoring with application to the Weibull family," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 249-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    2. Kumar, Vikas, 2016. "Some results on Tsallis entropy measure and k-record values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 667-673.
    3. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    4. Goel, Ritu & Taneja, H.C. & Kumar, Vikas, 2018. "Measure of entropy for past lifetime and k-record statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 623-631.
    5. Ahmadi, J. & Fashandi, M., 2019. "Characterization of symmetric distributions based on some information measures properties of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 141-152.
    6. Mohamed A. Abd Elgawad & Haroon M. Barakat & Metwally A. Alawady & Doaa A. Abd El-Rahman & Islam A. Husseiny & Atef F. Hashem & Naif Alotaibi, 2023. "Extropy and Some of Its More Recent Related Measures for Concomitants of K -Record Values in an Extended FGM Family," Mathematics, MDPI, vol. 11(24), pages 1-25, December.
    7. Ahmadi, Jafar, 2020. "Characterization results for symmetric continuous distributions based on the properties of k-records and spacings," Statistics & Probability Letters, Elsevier, vol. 162(C).
    8. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    9. Kayid, M. & Izadkhah, S., 2015. "Characterizations of the exponential distribution by the concept of residual life at random time," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 164-169.
    10. Sunoj, S.M. & Krishnan, Aswathy S. & Sankaran, P.G., 2018. "A quantile-based study of cumulative residual Tsallis entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 410-421.
    11. Maryam Eskandarzadeh & Antonio Di Crescenzo & Saeid Tahmasebi, 2019. "Cumulative Measure of Inaccuracy and Mutual Information in k -th Lower Record Values," Mathematics, MDPI, vol. 7(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishnan, N. & Burkschat, Marco & Cramer, Erhard & Hofmann, Glenn, 2008. "Fisher information based progressive censoring plans," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 366-380, December.
    2. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    3. Wang, Yanhua & He, Shuyuan, 2005. "Fisher information in censored data," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 199-206, June.
    4. Ayush Tripathi & Umesh Singh & Sanjay Kumar Singh, 2021. "Inferences for the DUS-Exponential Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 8(2), pages 387-403, June.
    5. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    6. Takis Papaioannou & Kosmas Ferentinos & Charalampos Tsairidis, 2007. "Some Information Theoretic Ideas Useful in Statistical Inference," Methodology and Computing in Applied Probability, Springer, vol. 9(2), pages 307-323, June.
    7. Zheng, Gang & Gastwirth, Joseph L., 2001. "On the Fisher information in randomly censored data," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 421-426, May.
    8. Hofmann, Glenn & Balakrishnan, N. & Ahmadi, Jafar, 2005. "Characterization of hazard function factorization by Fisher information in minima and upper record values," Statistics & Probability Letters, Elsevier, vol. 72(1), pages 51-57, April.
    9. Balakrishnan, N. & Stepanov, A., 2006. "On the Fisher information in record data," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 537-545, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:798-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.