IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp386-395.html
   My bibliography  Save this article

Weighted modularity optimization for crisp and fuzzy community detection in large-scale networks

Author

Listed:
  • Cao, Jie
  • Bu, Zhan
  • Gao, Guangliang
  • Tao, Haicheng

Abstract

Community detection is a classic and very difficult task in the field of complex network analysis, principally for its applications in domains such as social or biological networks analysis. One of the most widely used technologies for community detection in networks is the maximization of the quality function known as modularity. However, existing work has proved that modularity maximization algorithms for community detection may fail to resolve communities in small size. Here we present a new community detection method, which is able to find crisp and fuzzy communities in undirected and unweighted networks by maximizing weighted modularity. The algorithm derives new edge weights using the cosine similarity in order to go around the resolution limit problem. Then a new local moving heuristic based on weighted modularity optimization is proposed to cluster the updated network. Finally, the set of potentially attractive clusters for each node is computed, to further uncover the crisply fuzzy partition of the network. We give demonstrative applications of the algorithm to a set of synthetic benchmark networks and six real-world networks and find that it outperforms the current state of the art proposals (even those aimed at finding overlapping communities) in terms of quality and scalability.

Suggested Citation

  • Cao, Jie & Bu, Zhan & Gao, Guangliang & Tao, Haicheng, 2016. "Weighted modularity optimization for crisp and fuzzy community detection in large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 386-395.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:386-395
    DOI: 10.1016/j.physa.2016.06.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303880
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Liu, Jian & Cao, Jie & Wang, Youguo & Hu, Bing, 2019. "Asymmetric stochastic resonance in a bistable system driven by non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 321-336.
    4. Liu, Jie & Ge, Huilin, 2022. "Collaboration mechanisms and community detection of statisticians based on ERGMs and kNN-walktrap," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    2. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    3. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    4. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    6. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    7. Chagas, Guilherme Oliveira & Lorena, Luiz Antonio Nogueira & dos Santos, Rafael Duarte Coelho, 2022. "A hybrid heuristic for overlapping community detection through the conductance minimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    8. Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    10. Klapka, Pavel & Kraft, Stanislav & Halás, Marián, 2020. "Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows," Journal of Transport Geography, Elsevier, vol. 88(C).
    11. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    12. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    13. Dafne E. van Kuppevelt & Rena Bakhshi & Eelke M. Heemskerk & Frank W. Takes, 2022. "Community membership consistency applied to corporate board interlock networks," Journal of Computational Social Science, Springer, vol. 5(1), pages 841-860, May.
    14. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    15. Kyle F Davis & Paolo D'Odorico & Francesco Laio & Luca Ridolfi, 2013. "Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    16. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    17. Akshat Singhal & Song Cao & Christopher Churas & Dexter Pratt & Santo Fortunato & Fan Zheng & Trey Ideker, 2020. "Multiscale community detection in Cytoscape," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-10, October.
    18. Hao Wu & Lin Gao & Jihua Dong & Xiaofei Yang, 2014. "Detecting Overlapping Protein Complexes by Rough-Fuzzy Clustering in Protein-Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    19. Wang, Tai-Chi & Phoa, Frederick Kin Hing, 2016. "A scanning method for detecting clustering pattern of both attribute and structure in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 295-309.
    20. Rodica Ioana Lung & Camelia Chira & Anca Andreica, 2014. "Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:386-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.