IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp428-441.html
   My bibliography  Save this article

Leaders in communities of real-world networks

Author

Listed:
  • Fu, Jingcheng
  • Wu, Jianliang
  • Liu, Chuanjian
  • Xu, Jin

Abstract

Community structures have important influence on the properties and dynamic characteristics of the complex networks. However, to the best of our knowledge, there is not much attention given to investigating the internal structure of communities in the literature. In this paper, we study community structures of more than twenty existing networks using ten commonly used community-detecting methods, and discovery that most communities have several leaders whose degrees are particularly large. We use statistical parameter, variance, to classify the communities as leader communities and self-organized communities. In a leader community, we defined the nodes with largest 10% degree as its leaders. In our experiences, when removing the leaders, on average community’s internal edges are reduced by more than 40% and inter-communities edges are reduced by more than 20%. In addition, community’s average clustering coefficient decreases. These facts suggest that the leaders play an important role in keeping communities denser and more clustered, and it is the leaders that are more likely to link to other communities. Moreover, similar results for several random networks are obtained, and a theoretical lower bound of the lost internal edges is given. Our study shed the light on the further understanding and application of the internal community structure in complex networks.

Suggested Citation

  • Fu, Jingcheng & Wu, Jianliang & Liu, Chuanjian & Xu, Jin, 2016. "Leaders in communities of real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 428-441.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:428-441
    DOI: 10.1016/j.physa.2015.09.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115008341
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingjing & Zhang, Jian & Li, Huajiao & Jiang, Meihui, 2018. "Network and community structure in a scientific team with high creative performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 702-709.
    2. Qingchun Meng & Zhen Zhang & Xiaole Wan & Xiaoxia Rong, 2018. "Properties Exploring and Information Mining in Consumer Community Network: A Case of Huawei Pollen Club," Complexity, Hindawi, vol. 2018, pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polovnikov, Kirill & Kazakov, Vlad & Syntulsky, Sergey, 2020. "Core–periphery organization of the cryptocurrency market inferred by the modularity operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Laurie A. Schintler & Aura Reggiani & Rajendra Kulkarni & Peter Nijkamp, 2003. "Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison," ERSA conference papers ersa03p436, European Regional Science Association.
    3. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    4. Yao, Xin & Zhang, Chang-shui & Chen, Jin-wen & Li, Yan-da, 2005. "On the formation of degree and cluster-degree correlations in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 661-673.
    5. Türker, İlker, 2018. "Generating clustered scale-free networks using Poisson based localization of edges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 72-85.
    6. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    7. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    8. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    9. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    10. Arenas, Alex & Diaz-Guilera, Albert & Perez, Conrad J. & Vega-Redondo, Fernando, 2002. "Self-organized criticality in evolutionary systems with local interaction," Journal of Economic Dynamics and Control, Elsevier, vol. 26(12), pages 2115-2142, October.
    11. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    12. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    13. J. Esquivel-Gómez & R. E. Balderas-Navarro & P. D. Arjona-Villicaña & P. Castillo-Castillo & O. Rico-Trejo & J. Acosta-Elias, 2017. "On the Emergence of Islands in Complex Networks," Complexity, Hindawi, vol. 2017, pages 1-10, January.
    14. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    15. Yeşim Güney & Yetkin Tuaç & Olcay Arslan, 2017. "Marshall–Olkin distribution: parameter estimation and application to cancer data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2238-2250, September.
    16. Gamannossi degl’Innocenti, Duccio & Rablen, Matthew D., 2020. "Tax evasion on a social network," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 79-91.
    17. Zhang, Zhongzhi & Rong, Lili & Comellas, Francesc, 2006. "High-dimensional random Apollonian networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 610-618.
    18. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    19. Yang, J.-H. Steffi, 2009. "Social network influence and market instability," Journal of Mathematical Economics, Elsevier, vol. 45(3-4), pages 257-276, March.
    20. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:428-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.