IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp312-331.html
   My bibliography  Save this article

A community-detection based approach to identification of inhomogeneities in granular matter

Author

Listed:
  • Navakas, Robertas
  • Džiugys, Algis
  • Peters, Bernhard

Abstract

Interparticle interactions in granular matter are commonly represented by appropriate graphs, therefore, inhomogeneities in granular matter can be possibly reflected by community structure in the respective graphs. Approaches and algorithms for community detection are being actively developed and the achievements in this area can be utilized for analysis of granular systems, where bridging the gap from microscopic configuration to macroscopic phenomena is of great interest.

Suggested Citation

  • Navakas, Robertas & Džiugys, Algis & Peters, Bernhard, 2014. "A community-detection based approach to identification of inhomogeneities in granular matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 312-331.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:312-331
    DOI: 10.1016/j.physa.2014.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114003070
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael T Schaub & Jean-Charles Delvenne & Sophia N Yaliraki & Mauricio Barahona, 2012. "Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    2. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Džiugys, Algis & Mahmoudi, Amir Houshang & Misiulis, Edgaras & Navakas, Robertas & Skarbalius, Gediminas, 2022. "Fractal dependence of the packed bed porosity on the particles size distribution," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    2. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    3. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    4. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    5. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    6. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    7. Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    9. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    11. Dafne E. van Kuppevelt & Rena Bakhshi & Eelke M. Heemskerk & Frank W. Takes, 2022. "Community membership consistency applied to corporate board interlock networks," Journal of Computational Social Science, Springer, vol. 5(1), pages 841-860, May.
    12. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    13. Kyle F Davis & Paolo D'Odorico & Francesco Laio & Luca Ridolfi, 2013. "Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    14. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    15. Rodica Ioana Lung & Camelia Chira & Anca Andreica, 2014. "Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    16. Fu, Jingcheng & Wu, Jianliang & Liu, Chuanjian & Xu, Jin, 2016. "Leaders in communities of real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 428-441.
    17. Lan Huang & Guishen Wang & Yan Wang & Enrico Blanzieri & Chao Su, 2013. "Link Clustering with Extended Link Similarity and EQ Evaluation Division," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-18, June.
    18. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Raghvendra Mall & Rocco Langone & Johan A K Suykens, 2014. "Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-18, June.
    20. Zhang, Hongli & Gao, Yang & Zhang, Yue, 2018. "Overlapping communities from dense disjoint and high total degree clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 286-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:312-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.