IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v28y2014i3d10.1007_s10878-014-9719-z.html
   My bibliography  Save this article

Noise-tolerance community detection and evolution in dynamic social networks

Author

Listed:
  • Li Wang

    (College of Computer Science and Technology, Taiyuan University of Technology)

  • Jiang Wang

    (College of Computer Science and Technology, Taiyuan University of Technology)

  • Yuanjun Bi

    (University of Texas at Dallas)

  • Weili Wu

    (University of Texas at Dallas)

  • Wen Xu

    (University of Texas at Dallas)

  • Biao Lian

    (College of Computer Science and Technology, Taiyuan University of Technology)

Abstract

Dynamic complex social network is always mixed with noisy data and abnormal events always influence the network. It is important to track dynamic community evolution and discover the abnormal events for understanding real world. In this paper, we propose a novel algorithm Noise-Tolerance Community Detection (NTCD) to discover dynamic community structure that is based on historical information and current information. An updated algorithm is introduced to help find the community structure snapshot at each time step. One evaluation method based on structure and connection degree is proposed to measure the community similarity. Based on this evaluation, the latent community evolution can be tracked and abnormal events can be gotten. Experiments on different real datasets show that NTCD not only eliminates the influence of noisy data but also discovers the real community structure and abnormal events.

Suggested Citation

  • Li Wang & Jiang Wang & Yuanjun Bi & Weili Wu & Wen Xu & Biao Lian, 2014. "Noise-tolerance community detection and evolution in dynamic social networks," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 600-612, October.
  • Handle: RePEc:spr:jcomop:v:28:y:2014:i:3:d:10.1007_s10878-014-9719-z
    DOI: 10.1007/s10878-014-9719-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-014-9719-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-014-9719-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    2. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodica Ioana Lung & Camelia Chira & Anca Andreica, 2014. "Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    2. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    3. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    4. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    6. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    7. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    8. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    9. Saha, Dipa & Mitra, Sayantan & Bhowmik, Bishnu & Sensharma, Ankur, 2021. "Isotropic random geometric networks in two dimensions with a penetrable cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    10. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    11. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    12. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    13. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    14. Chagas, Guilherme Oliveira & Lorena, Luiz Antonio Nogueira & dos Santos, Rafael Duarte Coelho, 2022. "A hybrid heuristic for overlapping community detection through the conductance minimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    15. Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    17. Klapka, Pavel & Kraft, Stanislav & Halás, Marián, 2020. "Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows," Journal of Transport Geography, Elsevier, vol. 88(C).
    18. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    19. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    20. Dafne E. van Kuppevelt & Rena Bakhshi & Eelke M. Heemskerk & Frank W. Takes, 2022. "Community membership consistency applied to corporate board interlock networks," Journal of Computational Social Science, Springer, vol. 5(1), pages 841-860, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:28:y:2014:i:3:d:10.1007_s10878-014-9719-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.