IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp101-116.html
   My bibliography  Save this article

Augmenting matrix factorization technique with the combination of tags and genres

Author

Listed:
  • Ma, Tinghuai
  • Suo, Xiafei
  • Zhou, Jinjuan
  • Tang, Meili
  • Guan, Donghai
  • Tian, Yuan
  • Al-Dhelaan, Abdullah
  • Al-Rodhaan, Mznah

Abstract

Recommender systems play an important role in our daily life and are becoming popular tools for users to find what they are really interested in. Matrix factorization methods, which are popular recommendation methods, have gained high attention these years. With the rapid growth of the Internet, lots of information has been created, like social network information, tags and so on. Along with these, a few matrix factorization approaches have been proposed which incorporate the personalized information of users or items. However, except for ratings, most of the matrix factorization models have utilized only one kind of information to understand users’ interests. Considering the sparsity of information, in this paper, we try to investigate the combination of different information, like tags and genres, to reveal users’ interests accurately. With regard to the generalization of genres, a constraint is added when genres are utilized to find users’ similar “soulmates”. In addition, item regularizer is also considered based on latent semantic indexing (LSI) method with the item tags. Our experiments are conducted on two real datasets: Movielens dataset and Douban dataset. The experimental results demonstrate that the combination of tags and genres is really helpful to reveal users’ interests.

Suggested Citation

  • Ma, Tinghuai & Suo, Xiafei & Zhou, Jinjuan & Tang, Meili & Guan, Donghai & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2016. "Augmenting matrix factorization technique with the combination of tags and genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 101-116.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:101-116
    DOI: 10.1016/j.physa.2016.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302060
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zi-Ke & Yu, Lu & Fang, Kuan & You, Zhi-Qiang & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 82-88.
    2. Ding, Chris & Li, Tao & Peng, Wei, 2008. "On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3913-3927, April.
    3. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Xiuqin & Liu, Taiheng & Li, Wenzhou & Liu, Fuchun & Peng, Jiaen, 2019. "A latent factor model of fusing social regularization term and item regularization term," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1330-1342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriaki Kalimeri & Matteo Delfino & Ciro Cattuto & Daniela Perrotta & Vittoria Colizza & Caroline Guerrisi & Clement Turbelin & Jim Duggan & John Edmunds & Chinelo Obi & Richard Pebody & Ana O Franco , 2019. "Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    2. Shota Saito & Yoshito Hirata & Kazutoshi Sasahara & Hideyuki Suzuki, 2015. "Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-17, September.
    3. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    4. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    5. Dongjin Choi & Jun-Gi Jang & U Kang, 2019. "S3CMTF: Fast, accurate, and scalable method for incomplete coupled matrix-tensor factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    6. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    7. Danushka Bollegala & Georgios Kontonatsios & Sophia Ananiadou, 2015. "A Cross-Lingual Similarity Measure for Detecting Biomedical Term Translations," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-28, June.
    8. Ma, Xiaoke & Wang, Bingbo & Yu, Liang, 2018. "Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 786-802.
    9. Ma, Wenping & Ren, Chen & Wu, Yue & Wang, Shanfeng & Feng, Xiang, 2017. "Personalized recommendation via unbalance full-connectivity inference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 273-279.
    10. Qian, Fulan & Zhao, Shu & Tang, Jie & Zhang, Yanping, 2016. "SoRS: Social recommendation using global rating reputation and local rating similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 61-72.
    11. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    12. Manini Madireddy & Ramasubramanian Sundararajan & Goda Doreswamy & Meisam Hejazi Nia & Amod Mital, 2017. "Constructing bundled offers for airline customers," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 532-552, December.
    13. Nicolas Jouvin & Pierre Latouche & Charles Bouveyron & Guillaume Bataillon & Alain Livartowski, 2021. "Greedy clustering of count data through a mixture of multinomial PCA," Computational Statistics, Springer, vol. 36(1), pages 1-33, March.
    14. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    15. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    16. Travis R Meyer & Daniel Balagué & Miguel Camacho-Collados & Hao Li & Katie Khuu & P Jeffrey Brantingham & Andrea L Bertozzi, 2019. "A year in Madrid as described through the analysis of geotagged Twitter data," Environment and Planning B, , vol. 46(9), pages 1724-1740, November.
    17. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    18. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    19. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    20. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:101-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.