IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10199-d634210.html
   My bibliography  Save this article

Volatility and Risk in the Energy Market: A Trade Network Approach

Author

Listed:
  • Germán G. Creamer

    (School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

  • Tal Ben-Zvi

    (School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

Abstract

This paper evaluates the effect of energy trade networks on the price volatility of coal, oil, natural gas, and electricity. This research conducts a longitudinal analysis using a time series of static coal trade networks to generate a dynamic trade network. It uses the component causality index as a leading indicator of the price volatility of the energy market. This research finds out that the component causality index, based on degree centrality, anticipates or moves together with coal volatility and, to a lesser degree, with natural gas and electricity volatility for the period 1998–2014. The proposed index could be integrated into a risk management system for investors and regulators. The broad impact of this research lies in the understanding of mechanisms of the instability and risk of the energy sector as a result of a complex interaction of the network of producers and traders.

Suggested Citation

  • Germán G. Creamer & Tal Ben-Zvi, 2021. "Volatility and Risk in the Energy Market: A Trade Network Approach," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10199-:d:634210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lance J. Bachmeier & James M. Griffin, 2006. "Testing for Market Integration: Crude Oil, Coal, and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 55-72.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Stephen P. A. Brown & Mine K. Yucel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 45-60.
    4. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    5. Peter R. Hartley & Kenneth B Medlock III & Jennifer E. Rosthal, 2008. "The Relationship of Natural Gas to Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 47-66.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    8. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    9. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    10. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    11. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    12. Cole, Matthew A. & Elliott, Robert J.R. & Okubo, Toshihiro & Zhou, Ying, 2013. "The carbon dioxide emissions of firms: A spatial analysis," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 290-309.
    13. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    14. Hassan Mohammadi, 2011. "Long-run relations and short-run dynamics among coal, natural gas and oil prices," Applied Economics, Taylor & Francis Journals, vol. 43(2), pages 129-137.
    15. Kentaka Aruga & Shunsuke Managi, 2013. "Linkages among the US energy futures markets," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 36(1), pages 13-26.
    16. Blake LeBaron, "undated". "Persistence of the Dow Jones Index on Rising Volume," Working papers _006, University of Wisconsin - Madison.
    17. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    18. Mohammadi, Hassan, 2009. "Electricity prices and fuel costs: Long-run relations and short-run dynamics," Energy Economics, Elsevier, vol. 31(3), pages 503-509, May.
    19. Gregory R. Duffee, 1992. "Trading volume and return reversals," Finance and Economics Discussion Series 192, Board of Governors of the Federal Reserve System (U.S.).
    20. Dror Y. Kenett & Sary Levy-Carciente & Adam Avakian & H. Eugene Stanley & Shlomo Havlin, 2015. "Dynamical Macroprudential Stress Testing Using Network Theory," Working Papers 15-12, Office of Financial Research, US Department of the Treasury.
    21. Hinich, Melvin J & Patterson, Douglas M, 1985. "Evidence of Nonlinearity in Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(1), pages 69-77, January.
    22. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    23. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    24. Martin Summer, 2013. "Financial Contagion and Network Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 277-297, November.
    25. Levy-Carciente, Sary & Kenett, Dror Y. & Avakian, Adam & Stanley, H. Eugene & Havlin, Shlomo, 2015. "Dynamical macroprudential stress testing using network theory," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 164-181.
    26. Racicot, François-Éric & Théoret, Raymond, 2018. "Multi-moment risk, hedging strategies, & the business cycle," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 637-675.
    27. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    28. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    29. Asche, Frank & Gjolberg, Ole & Volker, Teresa, 2003. "Price relationships in the petroleum market: an analysis of crude oil and refined product prices," Energy Economics, Elsevier, vol. 25(3), pages 289-301, May.
    30. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    31. Niccolò Casnici & Pierpaolo Dondio & Roberto Casarin & Flaminio Squazzoni, 2015. "Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    32. Vasant Dhar & Tomer Geva & Gal Oestreicher-Singer & Arun Sundararajan, 2014. "Prediction in Economic Networks," Information Systems Research, INFORMS, vol. 25(2), pages 264-284, June.
    33. Chintrakarn, Pandej & Millimet, Daniel L., 2006. "The environmental consequences of trade: Evidence from subnational trade flows," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 430-453, July.
    34. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    35. Bai, Zhidong & Wong, Wing-Keung & Zhang, Bingzhi, 2010. "Multivariate linear and nonlinear causality tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 5-17.
    36. Amil Dasgupta, 2004. "Financial Contagion Through Capital Connections: A Model of the Origin and Spread of Bank Panics," Journal of the European Economic Association, MIT Press, vol. 2(6), pages 1049-1084, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Gorzeń-Mitka & Monika Wieczorek-Kosmala, 2023. "Mapping the Energy Sector from a Risk Management Research Perspective: A Bibliometric and Scientific Approach," Energies, MDPI, vol. 16(4), pages 1-32, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    2. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    3. Sullivan HUE & Yannick LUCOTTE & Sessi TOKPAVI, 2018. "Measuring Network Systemic Risk Contributions: A Leave-one-out Approach," LEO Working Papers / DR LEO 2608, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. Hué, Sullivan & Lucotte, Yannick & Tokpavi, Sessi, 2019. "Measuring network systemic risk contributions: A leave-one-out approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 86-114.
    5. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    6. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    7. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    8. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    9. Bu, Hui & Tang, Wenjin & Wu, Junjie, 2019. "Time-varying comovement and changes of comovement structure in the Chinese stock market: A causal network method," Economic Modelling, Elsevier, vol. 81(C), pages 181-204.
    10. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    11. Song, Jianhua & Zhang, Zhepei & So, Mike K.P., 2021. "On the predictive power of network statistics for financial risk indicators," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    12. Caraiani, Petre, 2014. "The predictive power of singular value decomposition entropy for stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 571-578.
    13. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    14. Rashid, Abdul, 2007. "Stock prices and trading volume: An assessment for linear and nonlinear Granger causality," Journal of Asian Economics, Elsevier, vol. 18(4), pages 595-612, August.
    15. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    16. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    17. Tan T. M. Le & Franck Martin & Duc K. Nguyen, 2018. "Dynamic connectedness of global currencies: a conditional Granger-causality approach," Economics Working Paper Archive (University of Rennes & University of Caen) 2018-04, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    18. Caraiani, Petre, 2017. "The predictive power of local properties of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 79-90.
    19. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    20. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10199-:d:634210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.